单细胞和空间转录组学在植物研究中的应用

Qing Sang, Fanjiang Kong
{"title":"单细胞和空间转录组学在植物研究中的应用","authors":"Qing Sang,&nbsp;Fanjiang Kong","doi":"10.1016/j.ncrops.2024.100025","DOIUrl":null,"url":null,"abstract":"<div><p>Cells of multicellular plants possess inherent heterogeneity. Recent progress in single-cell RNA sequencing (scRNA-seq) allows researchers to classify, characterize, and distinguish individual cells at the transcriptome level, enabling the identification of rare cell populations with functional importance. However, scRNA-seq obscures spatial information about cells. Spatial transcriptomics approaches have substantially improved our capacity to detect the spatial distribution of RNA transcripts throughout tissues, yet it remains challenging to characterize whole-transcriptome-level data for single cells spatially. In this review, we offer a concise overview of the scRNA-seq and spatial transcriptomics experimental and computational procedures and the computational strategies required to integrate scRNA-seq data with spatial transcriptomics. We demonstrate their impact on plant fundamental cell biology, discuss their advantages and current challenges, and provide an outlook on the future.</p></div>","PeriodicalId":100953,"journal":{"name":"New Crops","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2949952624000153/pdfft?md5=53f6d08fd117f9362e2da0bb22be2885&pid=1-s2.0-S2949952624000153-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Applications for single-cell and spatial transcriptomics in plant research\",\"authors\":\"Qing Sang,&nbsp;Fanjiang Kong\",\"doi\":\"10.1016/j.ncrops.2024.100025\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Cells of multicellular plants possess inherent heterogeneity. Recent progress in single-cell RNA sequencing (scRNA-seq) allows researchers to classify, characterize, and distinguish individual cells at the transcriptome level, enabling the identification of rare cell populations with functional importance. However, scRNA-seq obscures spatial information about cells. Spatial transcriptomics approaches have substantially improved our capacity to detect the spatial distribution of RNA transcripts throughout tissues, yet it remains challenging to characterize whole-transcriptome-level data for single cells spatially. In this review, we offer a concise overview of the scRNA-seq and spatial transcriptomics experimental and computational procedures and the computational strategies required to integrate scRNA-seq data with spatial transcriptomics. We demonstrate their impact on plant fundamental cell biology, discuss their advantages and current challenges, and provide an outlook on the future.</p></div>\",\"PeriodicalId\":100953,\"journal\":{\"name\":\"New Crops\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2949952624000153/pdfft?md5=53f6d08fd117f9362e2da0bb22be2885&pid=1-s2.0-S2949952624000153-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"New Crops\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2949952624000153\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"New Crops","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949952624000153","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

多细胞植物的细胞具有固有的异质性。单细胞 RNA 测序(scRNA-seq)技术的最新进展使研究人员能够在转录组水平上对单个细胞进行分类、描述和区分,从而鉴定出具有重要功能的稀有细胞群。然而,scRNA-seq 模糊了细胞的空间信息。空间转录组学方法大大提高了我们检测整个组织中 RNA 转录本空间分布的能力,但要在空间上表征单细胞的全转录组水平数据仍具有挑战性。在这篇综述中,我们简要概述了 scRNA-seq 和空间转录组学的实验和计算程序,以及将 scRNA-seq 数据与空间转录组学整合所需的计算策略。我们展示了它们对植物基础细胞生物学的影响,讨论了它们的优势和当前面临的挑战,并对未来进行了展望。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Applications for single-cell and spatial transcriptomics in plant research

Cells of multicellular plants possess inherent heterogeneity. Recent progress in single-cell RNA sequencing (scRNA-seq) allows researchers to classify, characterize, and distinguish individual cells at the transcriptome level, enabling the identification of rare cell populations with functional importance. However, scRNA-seq obscures spatial information about cells. Spatial transcriptomics approaches have substantially improved our capacity to detect the spatial distribution of RNA transcripts throughout tissues, yet it remains challenging to characterize whole-transcriptome-level data for single cells spatially. In this review, we offer a concise overview of the scRNA-seq and spatial transcriptomics experimental and computational procedures and the computational strategies required to integrate scRNA-seq data with spatial transcriptomics. We demonstrate their impact on plant fundamental cell biology, discuss their advantages and current challenges, and provide an outlook on the future.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Meiosis in plants: From understanding to manipulation Perspectives on developing natural colored cotton through carotenoid biofortification Genome-wide characterization, identification, and isolation of auxin response factor (ARF) gene family in maize Precise control of falling flowers and fruits is a key part of improving quality and efficiency Molecular mechanisms of rice seed germination
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1