{"title":"在国防信标技术中实现高效通信的拉伸可穿戴式 SHF 天线","authors":"Pooja Naresh Bhatt , Rashmi Pandhare","doi":"10.1016/j.dt.2024.05.005","DOIUrl":null,"url":null,"abstract":"<div><div>The study projects a flexible and compact wearable pear-shaped Super High Frequency (SHF) antenna that can provide detailed location recognition and tracking applicable to defense beacon technology. This mini aperture with electrical dimensions of 0.12<em>λ</em><sub>0</sub> × 0.22<em>λ</em><sub>0</sub> × 0.01<em>λ</em><sub>0</sub> attains a vast bandwidth over 3.1–34.5 GHz Super High Frequency (SHF) frequency band at S<sub>11</sub> ≤ −10 dB, peak gain of 7.14 dBi and proportionately homogeneous radiation pattern. The fractional bandwidth (% BW) acquired is 168% that envelopes diversified frequency spectrum inclusive of X band specifically targeted to all kinds of defense and military operations. The proposed antenna can be worn on a soldier's uniform and hence the Specific Absorption Rate simulation is accomplished. The Peak SAR Value over 1 g of tissue is 1.48 W/kg and for 10 g of tissue is 0.27 W/kg well under the safety standards. The flexibility is proven by analyzing the full electromagnetic simulations for various bending conditions. Time response analysis is attained with its Fidelity Factor and Group Delay. Communication excellence is determined using Link Budget Analysis and it is seen that margin at 100 Mbps is 62 m and at 200 Mbps is 59 m. Prototype is fabricated along with experimental validation. All the results show harmony in shaping the antenna to provide critical situational awareness and data sharing capabilities required in defense beacon technology for location identification.</div></div>","PeriodicalId":58209,"journal":{"name":"Defence Technology(防务技术)","volume":"41 ","pages":"Pages 198-210"},"PeriodicalIF":5.0000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A tensile wearable SHF antenna with efficient communication in defense beacon technology\",\"authors\":\"Pooja Naresh Bhatt , Rashmi Pandhare\",\"doi\":\"10.1016/j.dt.2024.05.005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The study projects a flexible and compact wearable pear-shaped Super High Frequency (SHF) antenna that can provide detailed location recognition and tracking applicable to defense beacon technology. This mini aperture with electrical dimensions of 0.12<em>λ</em><sub>0</sub> × 0.22<em>λ</em><sub>0</sub> × 0.01<em>λ</em><sub>0</sub> attains a vast bandwidth over 3.1–34.5 GHz Super High Frequency (SHF) frequency band at S<sub>11</sub> ≤ −10 dB, peak gain of 7.14 dBi and proportionately homogeneous radiation pattern. The fractional bandwidth (% BW) acquired is 168% that envelopes diversified frequency spectrum inclusive of X band specifically targeted to all kinds of defense and military operations. The proposed antenna can be worn on a soldier's uniform and hence the Specific Absorption Rate simulation is accomplished. The Peak SAR Value over 1 g of tissue is 1.48 W/kg and for 10 g of tissue is 0.27 W/kg well under the safety standards. The flexibility is proven by analyzing the full electromagnetic simulations for various bending conditions. Time response analysis is attained with its Fidelity Factor and Group Delay. Communication excellence is determined using Link Budget Analysis and it is seen that margin at 100 Mbps is 62 m and at 200 Mbps is 59 m. Prototype is fabricated along with experimental validation. All the results show harmony in shaping the antenna to provide critical situational awareness and data sharing capabilities required in defense beacon technology for location identification.</div></div>\",\"PeriodicalId\":58209,\"journal\":{\"name\":\"Defence Technology(防务技术)\",\"volume\":\"41 \",\"pages\":\"Pages 198-210\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Defence Technology(防务技术)\",\"FirstCategoryId\":\"1087\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2214914724001119\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Defence Technology(防务技术)","FirstCategoryId":"1087","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214914724001119","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
A tensile wearable SHF antenna with efficient communication in defense beacon technology
The study projects a flexible and compact wearable pear-shaped Super High Frequency (SHF) antenna that can provide detailed location recognition and tracking applicable to defense beacon technology. This mini aperture with electrical dimensions of 0.12λ0 × 0.22λ0 × 0.01λ0 attains a vast bandwidth over 3.1–34.5 GHz Super High Frequency (SHF) frequency band at S11 ≤ −10 dB, peak gain of 7.14 dBi and proportionately homogeneous radiation pattern. The fractional bandwidth (% BW) acquired is 168% that envelopes diversified frequency spectrum inclusive of X band specifically targeted to all kinds of defense and military operations. The proposed antenna can be worn on a soldier's uniform and hence the Specific Absorption Rate simulation is accomplished. The Peak SAR Value over 1 g of tissue is 1.48 W/kg and for 10 g of tissue is 0.27 W/kg well under the safety standards. The flexibility is proven by analyzing the full electromagnetic simulations for various bending conditions. Time response analysis is attained with its Fidelity Factor and Group Delay. Communication excellence is determined using Link Budget Analysis and it is seen that margin at 100 Mbps is 62 m and at 200 Mbps is 59 m. Prototype is fabricated along with experimental validation. All the results show harmony in shaping the antenna to provide critical situational awareness and data sharing capabilities required in defense beacon technology for location identification.
Defence Technology(防务技术)Mechanical Engineering, Control and Systems Engineering, Industrial and Manufacturing Engineering
CiteScore
8.70
自引率
0.00%
发文量
728
审稿时长
25 days
期刊介绍:
Defence Technology, a peer reviewed journal, is published monthly and aims to become the best international academic exchange platform for the research related to defence technology. It publishes original research papers having direct bearing on defence, with a balanced coverage on analytical, experimental, numerical simulation and applied investigations. It covers various disciplines of science, technology and engineering.