改进 Golden Jackel 优化算法:化学数据分类应用

IF 3.7 2区 化学 Q2 AUTOMATION & CONTROL SYSTEMS Chemometrics and Intelligent Laboratory Systems Pub Date : 2024-05-17 DOI:10.1016/j.chemolab.2024.105149
Aiedh Mrisi Alharthi , Dler Hussein Kadir , Abdo Mohammed Al-Fakih , Zakariya Yahya Algamal , Niam Abdulmunim Al-Thanoon , Maimoonah Khalid Qasim
{"title":"改进 Golden Jackel 优化算法:化学数据分类应用","authors":"Aiedh Mrisi Alharthi ,&nbsp;Dler Hussein Kadir ,&nbsp;Abdo Mohammed Al-Fakih ,&nbsp;Zakariya Yahya Algamal ,&nbsp;Niam Abdulmunim Al-Thanoon ,&nbsp;Maimoonah Khalid Qasim","doi":"10.1016/j.chemolab.2024.105149","DOIUrl":null,"url":null,"abstract":"<div><p>One of the main issues affecting the effectiveness of the quantitative structure-activity relationship (QSAR) classification techniques in chemometrics is high dimensionality. Applying feature selection is a critical procedure that determines the most relevant and important aspects of a dataset. It improves the effectiveness and accuracy of prediction models by effectively lowering the number of features. This decrease increases classification accuracy, reduces computing strain, and improves overall performance. Recently, the golden jackal optimization (GJO) algorithm was introduced, which has been successfully used to solve various continuous optimization issues. Therefore, this study proposes an improvement in the GJO algorithm employing chaotic maps, abbreviated as CGJO, to enhance the exploration and exploitation capability of the GJO algorithm in picking the essential descriptors in QSAR classification models with high classification accuracy and less computation time. Experimental findings based on four different high-dimensional chemical datasets show that the proposed CGJO algorithm can maximize classification accuracy while simultaneously decreasing the number of chosen descriptors and lowering the time required for computing. Thus, the proposed algorithm can be useful for chemical data classification in other QSAR modeling.</p></div>","PeriodicalId":9774,"journal":{"name":"Chemometrics and Intelligent Laboratory Systems","volume":"250 ","pages":"Article 105149"},"PeriodicalIF":3.7000,"publicationDate":"2024-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Improving golden jackel optimization algorithm: An application of chemical data classification\",\"authors\":\"Aiedh Mrisi Alharthi ,&nbsp;Dler Hussein Kadir ,&nbsp;Abdo Mohammed Al-Fakih ,&nbsp;Zakariya Yahya Algamal ,&nbsp;Niam Abdulmunim Al-Thanoon ,&nbsp;Maimoonah Khalid Qasim\",\"doi\":\"10.1016/j.chemolab.2024.105149\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>One of the main issues affecting the effectiveness of the quantitative structure-activity relationship (QSAR) classification techniques in chemometrics is high dimensionality. Applying feature selection is a critical procedure that determines the most relevant and important aspects of a dataset. It improves the effectiveness and accuracy of prediction models by effectively lowering the number of features. This decrease increases classification accuracy, reduces computing strain, and improves overall performance. Recently, the golden jackal optimization (GJO) algorithm was introduced, which has been successfully used to solve various continuous optimization issues. Therefore, this study proposes an improvement in the GJO algorithm employing chaotic maps, abbreviated as CGJO, to enhance the exploration and exploitation capability of the GJO algorithm in picking the essential descriptors in QSAR classification models with high classification accuracy and less computation time. Experimental findings based on four different high-dimensional chemical datasets show that the proposed CGJO algorithm can maximize classification accuracy while simultaneously decreasing the number of chosen descriptors and lowering the time required for computing. Thus, the proposed algorithm can be useful for chemical data classification in other QSAR modeling.</p></div>\",\"PeriodicalId\":9774,\"journal\":{\"name\":\"Chemometrics and Intelligent Laboratory Systems\",\"volume\":\"250 \",\"pages\":\"Article 105149\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-05-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemometrics and Intelligent Laboratory Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0169743924000893\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemometrics and Intelligent Laboratory Systems","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0169743924000893","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

影响化学计量学中定量结构-活性关系(QSAR)分类技术有效性的主要问题之一是高维度。特征选择是确定数据集最相关和最重要方面的关键程序。它通过有效降低特征数量来提高预测模型的有效性和准确性。减少特征数量可以提高分类准确性,减少计算压力,并提高整体性能。最近,金豺优化(GJO)算法被引入,并成功用于解决各种连续优化问题。因此,本研究提出了一种采用混沌图的 GJO 算法改进方案,简称 CGJO,以增强 GJO 算法的探索和利用能力,从而在 QSAR 分类模型中挑选出高分类精度和较少计算时间的基本描述符。基于四个不同高维化学数据集的实验结果表明,所提出的 CGJO 算法可以最大限度地提高分类准确率,同时减少所选描述符的数量并降低计算所需的时间。因此,提出的算法可用于其他 QSAR 建模中的化学数据分类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Improving golden jackel optimization algorithm: An application of chemical data classification

One of the main issues affecting the effectiveness of the quantitative structure-activity relationship (QSAR) classification techniques in chemometrics is high dimensionality. Applying feature selection is a critical procedure that determines the most relevant and important aspects of a dataset. It improves the effectiveness and accuracy of prediction models by effectively lowering the number of features. This decrease increases classification accuracy, reduces computing strain, and improves overall performance. Recently, the golden jackal optimization (GJO) algorithm was introduced, which has been successfully used to solve various continuous optimization issues. Therefore, this study proposes an improvement in the GJO algorithm employing chaotic maps, abbreviated as CGJO, to enhance the exploration and exploitation capability of the GJO algorithm in picking the essential descriptors in QSAR classification models with high classification accuracy and less computation time. Experimental findings based on four different high-dimensional chemical datasets show that the proposed CGJO algorithm can maximize classification accuracy while simultaneously decreasing the number of chosen descriptors and lowering the time required for computing. Thus, the proposed algorithm can be useful for chemical data classification in other QSAR modeling.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.50
自引率
7.70%
发文量
169
审稿时长
3.4 months
期刊介绍: Chemometrics and Intelligent Laboratory Systems publishes original research papers, short communications, reviews, tutorials and Original Software Publications reporting on development of novel statistical, mathematical, or computer techniques in Chemistry and related disciplines. Chemometrics is the chemical discipline that uses mathematical and statistical methods to design or select optimal procedures and experiments, and to provide maximum chemical information by analysing chemical data. The journal deals with the following topics: 1) Development of new statistical, mathematical and chemometrical methods for Chemistry and related fields (Environmental Chemistry, Biochemistry, Toxicology, System Biology, -Omics, etc.) 2) Novel applications of chemometrics to all branches of Chemistry and related fields (typical domains of interest are: process data analysis, experimental design, data mining, signal processing, supervised modelling, decision making, robust statistics, mixture analysis, multivariate calibration etc.) Routine applications of established chemometrical techniques will not be considered. 3) Development of new software that provides novel tools or truly advances the use of chemometrical methods. 4) Well characterized data sets to test performance for the new methods and software. The journal complies with International Committee of Medical Journal Editors'' Uniform requirements for manuscripts.
期刊最新文献
A flame image soft sensor for oxygen content prediction based on denoising diffusion probabilistic model Prediction of potential antitumor components in Ganoderma lucidum: A combined approach using machine learning and molecular docking Spectra data calibration based on deep residual modeling of independent component regression Enhanced CO2 leak detection in soil: High-fidelity digital colorimetry with machine learning and ACES AP0 Quantitative structure properties relationship (QSPR) analysis for physicochemical properties of nonsteroidal anti-inflammatory drugs (NSAIDs) usingVe degree-based reducible topological indices
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1