二次加固对土工合成材料加固土墙行为的影响

IF 4.7 1区 工程技术 Q1 ENGINEERING, GEOLOGICAL Geotextiles and Geomembranes Pub Date : 2024-05-03 DOI:10.1016/j.geotexmem.2024.04.008
Fuxiu Li , Wenhao Guo , Yewei Zheng
{"title":"二次加固对土工合成材料加固土墙行为的影响","authors":"Fuxiu Li ,&nbsp;Wenhao Guo ,&nbsp;Yewei Zheng","doi":"10.1016/j.geotexmem.2024.04.008","DOIUrl":null,"url":null,"abstract":"<div><p>This paper presents numerical simulations to investigate the influence of secondary reinforcements on the behavior of geosynthetic reinforced soil (GRS) walls under static loading. Simulations were conducted using a finite difference program to model an instrumented field GRS wall with secondary reinforcements. Simulated results are in good agreement with field measurements, including facing displacements, lateral soil stresses, and tensile strains of the primary and secondary reinforcement. A parametric study was then conducted to investigate the influences of secondary reinforcement length, backfill soil friction angle, and wall height on the static behavior of GRS walls with secondary reinforcements. Results indicate that the maximum facing displacement and the required reinforcement tensile force of primary reinforcements generally decrease with increasing secondary reinforcement length up to a critical value. The decreasing effect is more pronounced for GRS walls with lower soil friction angle and higher wall height. The K-stiffness method is overconservative for the calculation of required tensile force of primary reinforcements for GRS walls with secondary reinforcements, and the overestimation increases with increasing secondary reinforcement length. A design method that accounts for the influence of secondary reinforcements on the internal stability of GRS walls is provided.</p></div>","PeriodicalId":55096,"journal":{"name":"Geotextiles and Geomembranes","volume":null,"pages":null},"PeriodicalIF":4.7000,"publicationDate":"2024-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Influence of secondary reinforcements on the behavior of geosynthetic reinforced soil walls\",\"authors\":\"Fuxiu Li ,&nbsp;Wenhao Guo ,&nbsp;Yewei Zheng\",\"doi\":\"10.1016/j.geotexmem.2024.04.008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This paper presents numerical simulations to investigate the influence of secondary reinforcements on the behavior of geosynthetic reinforced soil (GRS) walls under static loading. Simulations were conducted using a finite difference program to model an instrumented field GRS wall with secondary reinforcements. Simulated results are in good agreement with field measurements, including facing displacements, lateral soil stresses, and tensile strains of the primary and secondary reinforcement. A parametric study was then conducted to investigate the influences of secondary reinforcement length, backfill soil friction angle, and wall height on the static behavior of GRS walls with secondary reinforcements. Results indicate that the maximum facing displacement and the required reinforcement tensile force of primary reinforcements generally decrease with increasing secondary reinforcement length up to a critical value. The decreasing effect is more pronounced for GRS walls with lower soil friction angle and higher wall height. The K-stiffness method is overconservative for the calculation of required tensile force of primary reinforcements for GRS walls with secondary reinforcements, and the overestimation increases with increasing secondary reinforcement length. A design method that accounts for the influence of secondary reinforcements on the internal stability of GRS walls is provided.</p></div>\",\"PeriodicalId\":55096,\"journal\":{\"name\":\"Geotextiles and Geomembranes\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2024-05-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geotextiles and Geomembranes\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0266114424000414\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, GEOLOGICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geotextiles and Geomembranes","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0266114424000414","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
引用次数: 0

摘要

本文通过数值模拟研究了二次加固对土工合成材料加筋土(GRS)墙在静载荷下的行为的影响。模拟采用有限差分程序,对带有二次加固装置的现场土工合成材料加固墙进行建模。模拟结果与现场测量结果非常吻合,包括主筋和次筋的朝向位移、侧向土壤应力和拉伸应变。随后进行了参数研究,探讨了二次加固长度、回填土摩擦角和墙体高度对带二次加固的 GRS 墙体静态行为的影响。研究结果表明,随着二次加固长度的增加,一次加固的最大表面位移和所需的加固拉力通常会减小,直至临界值。对于土壤摩擦角较小、墙体高度较高的 GRS 墙,这种递减效应更为明显。采用 K-刚度法计算带二次加固的 GRS 墙体所需的一次加固拉力过于保守,而且高估的程度随着二次加固长度的增加而增加。本文提供了一种考虑到二次加固对 GRS 墙体内部稳定性影响的设计方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Influence of secondary reinforcements on the behavior of geosynthetic reinforced soil walls

This paper presents numerical simulations to investigate the influence of secondary reinforcements on the behavior of geosynthetic reinforced soil (GRS) walls under static loading. Simulations were conducted using a finite difference program to model an instrumented field GRS wall with secondary reinforcements. Simulated results are in good agreement with field measurements, including facing displacements, lateral soil stresses, and tensile strains of the primary and secondary reinforcement. A parametric study was then conducted to investigate the influences of secondary reinforcement length, backfill soil friction angle, and wall height on the static behavior of GRS walls with secondary reinforcements. Results indicate that the maximum facing displacement and the required reinforcement tensile force of primary reinforcements generally decrease with increasing secondary reinforcement length up to a critical value. The decreasing effect is more pronounced for GRS walls with lower soil friction angle and higher wall height. The K-stiffness method is overconservative for the calculation of required tensile force of primary reinforcements for GRS walls with secondary reinforcements, and the overestimation increases with increasing secondary reinforcement length. A design method that accounts for the influence of secondary reinforcements on the internal stability of GRS walls is provided.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Geotextiles and Geomembranes
Geotextiles and Geomembranes 地学-地球科学综合
CiteScore
9.50
自引率
21.20%
发文量
111
审稿时长
59 days
期刊介绍: The range of products and their applications has expanded rapidly over the last decade with geotextiles and geomembranes being specified world wide. This rapid growth is paralleled by a virtual explosion of technology. Current reference books and even manufacturers' sponsored publications tend to date very quickly and the need for a vehicle to bring together and discuss the growing body of technology now available has become evident. Geotextiles and Geomembranes fills this need and provides a forum for the dissemination of information amongst research workers, designers, users and manufacturers. By providing a growing fund of information the journal increases general awareness, prompts further research and assists in the establishment of international codes and regulations.
期刊最新文献
Seismic response and mitigation measures for T shape retaining wall in liquefiable site Stress-strain responses of EPS geofoam upon cyclic simple shearing: Experimental investigations and constitutive modeling A large-size model test study on the consolidation effect of construction waste slurry under self-weight and bottom vacuum preloading Observations from opening of a novel geotextile tube connection in field test site Liquefaction and reliquefaction mitigation of sand specimen treated with prefabricated vertical drains: An experimental investigation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1