{"title":"二次加固对土工合成材料加固土墙行为的影响","authors":"Fuxiu Li , Wenhao Guo , Yewei Zheng","doi":"10.1016/j.geotexmem.2024.04.008","DOIUrl":null,"url":null,"abstract":"<div><p>This paper presents numerical simulations to investigate the influence of secondary reinforcements on the behavior of geosynthetic reinforced soil (GRS) walls under static loading. Simulations were conducted using a finite difference program to model an instrumented field GRS wall with secondary reinforcements. Simulated results are in good agreement with field measurements, including facing displacements, lateral soil stresses, and tensile strains of the primary and secondary reinforcement. A parametric study was then conducted to investigate the influences of secondary reinforcement length, backfill soil friction angle, and wall height on the static behavior of GRS walls with secondary reinforcements. Results indicate that the maximum facing displacement and the required reinforcement tensile force of primary reinforcements generally decrease with increasing secondary reinforcement length up to a critical value. The decreasing effect is more pronounced for GRS walls with lower soil friction angle and higher wall height. The K-stiffness method is overconservative for the calculation of required tensile force of primary reinforcements for GRS walls with secondary reinforcements, and the overestimation increases with increasing secondary reinforcement length. A design method that accounts for the influence of secondary reinforcements on the internal stability of GRS walls is provided.</p></div>","PeriodicalId":55096,"journal":{"name":"Geotextiles and Geomembranes","volume":null,"pages":null},"PeriodicalIF":4.7000,"publicationDate":"2024-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Influence of secondary reinforcements on the behavior of geosynthetic reinforced soil walls\",\"authors\":\"Fuxiu Li , Wenhao Guo , Yewei Zheng\",\"doi\":\"10.1016/j.geotexmem.2024.04.008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This paper presents numerical simulations to investigate the influence of secondary reinforcements on the behavior of geosynthetic reinforced soil (GRS) walls under static loading. Simulations were conducted using a finite difference program to model an instrumented field GRS wall with secondary reinforcements. Simulated results are in good agreement with field measurements, including facing displacements, lateral soil stresses, and tensile strains of the primary and secondary reinforcement. A parametric study was then conducted to investigate the influences of secondary reinforcement length, backfill soil friction angle, and wall height on the static behavior of GRS walls with secondary reinforcements. Results indicate that the maximum facing displacement and the required reinforcement tensile force of primary reinforcements generally decrease with increasing secondary reinforcement length up to a critical value. The decreasing effect is more pronounced for GRS walls with lower soil friction angle and higher wall height. The K-stiffness method is overconservative for the calculation of required tensile force of primary reinforcements for GRS walls with secondary reinforcements, and the overestimation increases with increasing secondary reinforcement length. A design method that accounts for the influence of secondary reinforcements on the internal stability of GRS walls is provided.</p></div>\",\"PeriodicalId\":55096,\"journal\":{\"name\":\"Geotextiles and Geomembranes\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2024-05-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geotextiles and Geomembranes\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0266114424000414\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, GEOLOGICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geotextiles and Geomembranes","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0266114424000414","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
Influence of secondary reinforcements on the behavior of geosynthetic reinforced soil walls
This paper presents numerical simulations to investigate the influence of secondary reinforcements on the behavior of geosynthetic reinforced soil (GRS) walls under static loading. Simulations were conducted using a finite difference program to model an instrumented field GRS wall with secondary reinforcements. Simulated results are in good agreement with field measurements, including facing displacements, lateral soil stresses, and tensile strains of the primary and secondary reinforcement. A parametric study was then conducted to investigate the influences of secondary reinforcement length, backfill soil friction angle, and wall height on the static behavior of GRS walls with secondary reinforcements. Results indicate that the maximum facing displacement and the required reinforcement tensile force of primary reinforcements generally decrease with increasing secondary reinforcement length up to a critical value. The decreasing effect is more pronounced for GRS walls with lower soil friction angle and higher wall height. The K-stiffness method is overconservative for the calculation of required tensile force of primary reinforcements for GRS walls with secondary reinforcements, and the overestimation increases with increasing secondary reinforcement length. A design method that accounts for the influence of secondary reinforcements on the internal stability of GRS walls is provided.
期刊介绍:
The range of products and their applications has expanded rapidly over the last decade with geotextiles and geomembranes being specified world wide. This rapid growth is paralleled by a virtual explosion of technology. Current reference books and even manufacturers' sponsored publications tend to date very quickly and the need for a vehicle to bring together and discuss the growing body of technology now available has become evident.
Geotextiles and Geomembranes fills this need and provides a forum for the dissemination of information amongst research workers, designers, users and manufacturers. By providing a growing fund of information the journal increases general awareness, prompts further research and assists in the establishment of international codes and regulations.