{"title":"拦截不使用 GPS、携带炸弹的非军事神风特攻队无人机的新型框架:保护关键基础设施","authors":"","doi":"10.1016/j.dt.2024.05.001","DOIUrl":null,"url":null,"abstract":"<div><div>Protection of urban critical infrastructures (CIs) from GPS-denied, bomb-carrying kamikaze drones (G-B-KDs) is very challenging. Previous approaches based on drone jamming, spoofing, communication interruption and hijacking cannot be applied in the case under examination, since G-B-KDs are uncontrolled. On the other hand, drone capturing schemes and electromagnetic pulse (EMP) weapons seem to be effective. However, again, existing approaches present various limitations, while most of them do not examine the case of G-B-KDs. This paper, focuses on the aforementioned under-researched field, where the G-B-KD is confronted by two defensive drones. The first neutralizes and captures the kamikaze drone, while the second captures the bomb. Both defensive drones are equipped with a net-gun and an innovative algorithm, which, among others, estimates the locations of interception, using a real-world trajectory model. Additionally, one of the defensive drones is also equipped with an EMP weapon to damage the electronics equipment of the kamikaze drone and reduce the capturing time and the overall risk. Extensive simulated experiments and comparisons to state-of-art methods, reveal the advantages and limitations of the proposed approach. More specifically, compared to state-of-art, the proposed approach improves: (a) time to neutralize the target by at least 6.89%, (b) maximum number of missions by at least 1.27% and (c) total cost by at least 5.15%.</div></div>","PeriodicalId":58209,"journal":{"name":"Defence Technology(防务技术)","volume":"40 ","pages":"Pages 225-241"},"PeriodicalIF":5.0000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A novel framework to intercept GPS-denied, bomb-carrying, non-military, kamikaze drones: Towards protecting critical infrastructures\",\"authors\":\"\",\"doi\":\"10.1016/j.dt.2024.05.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Protection of urban critical infrastructures (CIs) from GPS-denied, bomb-carrying kamikaze drones (G-B-KDs) is very challenging. Previous approaches based on drone jamming, spoofing, communication interruption and hijacking cannot be applied in the case under examination, since G-B-KDs are uncontrolled. On the other hand, drone capturing schemes and electromagnetic pulse (EMP) weapons seem to be effective. However, again, existing approaches present various limitations, while most of them do not examine the case of G-B-KDs. This paper, focuses on the aforementioned under-researched field, where the G-B-KD is confronted by two defensive drones. The first neutralizes and captures the kamikaze drone, while the second captures the bomb. Both defensive drones are equipped with a net-gun and an innovative algorithm, which, among others, estimates the locations of interception, using a real-world trajectory model. Additionally, one of the defensive drones is also equipped with an EMP weapon to damage the electronics equipment of the kamikaze drone and reduce the capturing time and the overall risk. Extensive simulated experiments and comparisons to state-of-art methods, reveal the advantages and limitations of the proposed approach. More specifically, compared to state-of-art, the proposed approach improves: (a) time to neutralize the target by at least 6.89%, (b) maximum number of missions by at least 1.27% and (c) total cost by at least 5.15%.</div></div>\",\"PeriodicalId\":58209,\"journal\":{\"name\":\"Defence Technology(防务技术)\",\"volume\":\"40 \",\"pages\":\"Pages 225-241\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Defence Technology(防务技术)\",\"FirstCategoryId\":\"1087\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2214914724001089\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Defence Technology(防务技术)","FirstCategoryId":"1087","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214914724001089","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
A novel framework to intercept GPS-denied, bomb-carrying, non-military, kamikaze drones: Towards protecting critical infrastructures
Protection of urban critical infrastructures (CIs) from GPS-denied, bomb-carrying kamikaze drones (G-B-KDs) is very challenging. Previous approaches based on drone jamming, spoofing, communication interruption and hijacking cannot be applied in the case under examination, since G-B-KDs are uncontrolled. On the other hand, drone capturing schemes and electromagnetic pulse (EMP) weapons seem to be effective. However, again, existing approaches present various limitations, while most of them do not examine the case of G-B-KDs. This paper, focuses on the aforementioned under-researched field, where the G-B-KD is confronted by two defensive drones. The first neutralizes and captures the kamikaze drone, while the second captures the bomb. Both defensive drones are equipped with a net-gun and an innovative algorithm, which, among others, estimates the locations of interception, using a real-world trajectory model. Additionally, one of the defensive drones is also equipped with an EMP weapon to damage the electronics equipment of the kamikaze drone and reduce the capturing time and the overall risk. Extensive simulated experiments and comparisons to state-of-art methods, reveal the advantages and limitations of the proposed approach. More specifically, compared to state-of-art, the proposed approach improves: (a) time to neutralize the target by at least 6.89%, (b) maximum number of missions by at least 1.27% and (c) total cost by at least 5.15%.
Defence Technology(防务技术)Mechanical Engineering, Control and Systems Engineering, Industrial and Manufacturing Engineering
CiteScore
8.70
自引率
0.00%
发文量
728
审稿时长
25 days
期刊介绍:
Defence Technology, a peer reviewed journal, is published monthly and aims to become the best international academic exchange platform for the research related to defence technology. It publishes original research papers having direct bearing on defence, with a balanced coverage on analytical, experimental, numerical simulation and applied investigations. It covers various disciplines of science, technology and engineering.