基于 ICP-MS 测定多种重金属浓度的电子香烟化学计量学评估

IF 1.2 4区 化学 Q4 CHEMISTRY, ANALYTICAL Chinese Journal of Analytical Chemistry Pub Date : 2024-05-01 DOI:10.1016/j.cjac.2024.100396
Chunqiong WANG , Wei LI , Dan CHEN , Jieyun CAI , Ke ZHANG , Jia WEI , Haowei SUN , Jianlong GU , Xiaowei ZHANG , Ganpeng LI , Kai LIU
{"title":"基于 ICP-MS 测定多种重金属浓度的电子香烟化学计量学评估","authors":"Chunqiong WANG ,&nbsp;Wei LI ,&nbsp;Dan CHEN ,&nbsp;Jieyun CAI ,&nbsp;Ke ZHANG ,&nbsp;Jia WEI ,&nbsp;Haowei SUN ,&nbsp;Jianlong GU ,&nbsp;Xiaowei ZHANG ,&nbsp;Ganpeng LI ,&nbsp;Kai LIU","doi":"10.1016/j.cjac.2024.100396","DOIUrl":null,"url":null,"abstract":"<div><p>To elucidate the concentrations of heavy metal elements in commercially available electronic cigarettes and improve quality assessment. Inductively coupled plasma-mass spectrometry (ICP-MS) coupled to chemometrics was used to determine the concentrations of Cr, Ni, As, Cd, Sn, Sb, Hg, and Pb in the e-liquids and aerosols derived from 32 electronic cigarettes sold commercially under six brand names. The e-liquids contained: 4.858 to 274.658 (Cr), 17.292 to 3068.375 (Ni), 3.217 to 29.867 (As), 0.225 to 24.717 (Cd), 0.783 to 17.042 (Sn), 0.658 to 36.033 (Sb), 0.658 to 187.592 (Hg), and 2.458 to 17.417 (Pb) ng g<sup>−1</sup>. The aerosol samples contained: 276.075 to 3333.175 (Cr), 72.908 to 1150.183 (Ni), 4.567 to 86.958 (As), 0.400 to 12.842 (Cd), 1.092 to 32.142 (Sn), 0.976 to 10.633 (Sb), 3.483 to 234.708 (Hg), 27.833 to 849.100 (Pb) ng 100 puffs<sup>−1</sup>. The recovery of heavy metals ranged from 99.1% to 112.4% in the e-liquids and from 87.3% to 116.6% in the aerosols, with RSD values below 10%. Hierarchical cluster analysis grouped the e-liquids into eight clusters, and the aerosols into five, indicating differences between products within brands and between different brands. Orthogonal partial least squares discriminant analysis coupled with variable importance in projection (VIP &gt; 1) identified As and Sb as the primary heavy metals causing differences between the e-liquids, while differences between the aerosols were caused by Hg, As, Pb, Cd, and Cr. The use of chemometric methods yields a greater depth of information that will support improvements to the quality control of e-cigarette products and the assessment of their potential risk to human health.</p></div>","PeriodicalId":277,"journal":{"name":"Chinese Journal of Analytical Chemistry","volume":"52 5","pages":"Article 100396"},"PeriodicalIF":1.2000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1872204024000410/pdfft?md5=afdbee0000cbefc1448655ca1a453571&pid=1-s2.0-S1872204024000410-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Chemometric assessment of electronic cigarettes based on the ICP-MS determination of multiple heavy metal concentrations\",\"authors\":\"Chunqiong WANG ,&nbsp;Wei LI ,&nbsp;Dan CHEN ,&nbsp;Jieyun CAI ,&nbsp;Ke ZHANG ,&nbsp;Jia WEI ,&nbsp;Haowei SUN ,&nbsp;Jianlong GU ,&nbsp;Xiaowei ZHANG ,&nbsp;Ganpeng LI ,&nbsp;Kai LIU\",\"doi\":\"10.1016/j.cjac.2024.100396\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>To elucidate the concentrations of heavy metal elements in commercially available electronic cigarettes and improve quality assessment. Inductively coupled plasma-mass spectrometry (ICP-MS) coupled to chemometrics was used to determine the concentrations of Cr, Ni, As, Cd, Sn, Sb, Hg, and Pb in the e-liquids and aerosols derived from 32 electronic cigarettes sold commercially under six brand names. The e-liquids contained: 4.858 to 274.658 (Cr), 17.292 to 3068.375 (Ni), 3.217 to 29.867 (As), 0.225 to 24.717 (Cd), 0.783 to 17.042 (Sn), 0.658 to 36.033 (Sb), 0.658 to 187.592 (Hg), and 2.458 to 17.417 (Pb) ng g<sup>−1</sup>. The aerosol samples contained: 276.075 to 3333.175 (Cr), 72.908 to 1150.183 (Ni), 4.567 to 86.958 (As), 0.400 to 12.842 (Cd), 1.092 to 32.142 (Sn), 0.976 to 10.633 (Sb), 3.483 to 234.708 (Hg), 27.833 to 849.100 (Pb) ng 100 puffs<sup>−1</sup>. The recovery of heavy metals ranged from 99.1% to 112.4% in the e-liquids and from 87.3% to 116.6% in the aerosols, with RSD values below 10%. Hierarchical cluster analysis grouped the e-liquids into eight clusters, and the aerosols into five, indicating differences between products within brands and between different brands. Orthogonal partial least squares discriminant analysis coupled with variable importance in projection (VIP &gt; 1) identified As and Sb as the primary heavy metals causing differences between the e-liquids, while differences between the aerosols were caused by Hg, As, Pb, Cd, and Cr. The use of chemometric methods yields a greater depth of information that will support improvements to the quality control of e-cigarette products and the assessment of their potential risk to human health.</p></div>\",\"PeriodicalId\":277,\"journal\":{\"name\":\"Chinese Journal of Analytical Chemistry\",\"volume\":\"52 5\",\"pages\":\"Article 100396\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S1872204024000410/pdfft?md5=afdbee0000cbefc1448655ca1a453571&pid=1-s2.0-S1872204024000410-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chinese Journal of Analytical Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1872204024000410\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Journal of Analytical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1872204024000410","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

摘要

为了阐明市售电子香烟中重金属元素的浓度并改进质量评估。采用电感耦合等离子体质谱法(ICP-MS)和化学计量学相结合的方法,测定了六个品牌的 32 种市售电子香烟的电子烟液和气溶胶中的铬、镍、砷、镉、锡、锑、汞和铅的浓度。电子烟液中含有4.858 至 274.658(铬)、17.292 至 3068.375(镍)、3.217 至 29.867(砷)、0.225 至 24.717(镉)、0.783 至 17.042(锡)、0.658 至 36.033(锑)、0.658 至 187.592(汞)和 2.458 至 17.417(铅)纳克 g-1。气溶胶样品中的重金属含量为:276.075 至 3333.175(铬)、72.908 至 1150.183(镍)、4.567 至 86.958(砷)、0.400 至 12.842(镉)、1.092 至 32.142(锡)、0.976 至 10.633(锑)、3.483 至 234.708(汞)、27.833 至 849.100(铅)纳克/100 puffs-1。电子液体中重金属的回收率为 99.1%至 112.4%,气溶胶中重金属的回收率为 87.3%至 116.6%,RSD 值均低于 10%。层次聚类分析将电子液体分为 8 个聚类,气溶胶分为 5 个聚类,显示了品牌内产品之间以及不同品牌之间的差异。正交偏最小二乘法判别分析加上投影中的变量重要性(VIP > 1)确定了造成电子液体之间差异的主要重金属是砷和锑,而气溶胶之间的差异则是由汞、砷、铅、镉和铬造成的。使用化学计量学方法可以获得更深入的信息,有助于改进电子烟产品的质量控制和评估其对人类健康的潜在风险。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Chemometric assessment of electronic cigarettes based on the ICP-MS determination of multiple heavy metal concentrations

To elucidate the concentrations of heavy metal elements in commercially available electronic cigarettes and improve quality assessment. Inductively coupled plasma-mass spectrometry (ICP-MS) coupled to chemometrics was used to determine the concentrations of Cr, Ni, As, Cd, Sn, Sb, Hg, and Pb in the e-liquids and aerosols derived from 32 electronic cigarettes sold commercially under six brand names. The e-liquids contained: 4.858 to 274.658 (Cr), 17.292 to 3068.375 (Ni), 3.217 to 29.867 (As), 0.225 to 24.717 (Cd), 0.783 to 17.042 (Sn), 0.658 to 36.033 (Sb), 0.658 to 187.592 (Hg), and 2.458 to 17.417 (Pb) ng g−1. The aerosol samples contained: 276.075 to 3333.175 (Cr), 72.908 to 1150.183 (Ni), 4.567 to 86.958 (As), 0.400 to 12.842 (Cd), 1.092 to 32.142 (Sn), 0.976 to 10.633 (Sb), 3.483 to 234.708 (Hg), 27.833 to 849.100 (Pb) ng 100 puffs−1. The recovery of heavy metals ranged from 99.1% to 112.4% in the e-liquids and from 87.3% to 116.6% in the aerosols, with RSD values below 10%. Hierarchical cluster analysis grouped the e-liquids into eight clusters, and the aerosols into five, indicating differences between products within brands and between different brands. Orthogonal partial least squares discriminant analysis coupled with variable importance in projection (VIP > 1) identified As and Sb as the primary heavy metals causing differences between the e-liquids, while differences between the aerosols were caused by Hg, As, Pb, Cd, and Cr. The use of chemometric methods yields a greater depth of information that will support improvements to the quality control of e-cigarette products and the assessment of their potential risk to human health.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.60
自引率
25.00%
发文量
17223
审稿时长
35 days
期刊介绍: Chinese Journal of Analytical Chemistry(CJAC) is an academic journal of analytical chemistry established in 1972 and sponsored by the Chinese Chemical Society and Changchun Institute of Applied Chemistry, Chinese Academy of Sciences. Its objectives are to report the original scientific research achievements and review the recent development of analytical chemistry in all areas. The journal sets up 5 columns including Research Papers, Research Notes, Experimental Technique and Instrument, Review and Progress and Summary Accounts. The journal published monthly in Chinese language. A detailed abstract, keywords and the titles of figures and tables are provided in English, except column of Summary Accounts. Prof. Wang Erkang, an outstanding analytical chemist, academician of Chinese Academy of Sciences & Third World Academy of Sciences, holds the post of the Editor-in-chief.
期刊最新文献
Determination of microplastic release from disposable plastic containers in Isfahan Renal protective effect of Isaria felina mycelium powder on diet and STZ-induced diabetes mice and the identification of major chemical constituents Determination of tetracycline by FRET fluorescence between chenpi carbon quantum dots and copper nanoparticles Numerical simulation of droplet formation in a Co-flow microchannel capillary device Jiawei Wumei Wan alleviates renal fibrosis in diabetic nephropathy mice by regulating the PI3K/AKT/mTOR signaling pathway
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1