Rice-ResNet:通过转移 ResNet 深度模型进行水稻分类和质量检测

IF 1.3 Q3 COMPUTER SCIENCE, SOFTWARE ENGINEERING Software Impacts Pub Date : 2024-05-01 DOI:10.1016/j.simpa.2024.100654
Mohammadreza Razavi , Samira Mavaddati , Ziad Kobti , Hamidreza Koohi
{"title":"Rice-ResNet:通过转移 ResNet 深度模型进行水稻分类和质量检测","authors":"Mohammadreza Razavi ,&nbsp;Samira Mavaddati ,&nbsp;Ziad Kobti ,&nbsp;Hamidreza Koohi","doi":"10.1016/j.simpa.2024.100654","DOIUrl":null,"url":null,"abstract":"<div><p>Efficient classification and quality assessment of rice varieties are essential for market pricing, food safety, and consumer satisfaction in the global rice sector. Leveraging pre-trained ResNet architectures, Rice-ResNet significantly enhances feature extraction, ensuring accurate classification and quality detection of rice cultivars. This system, accessible in Python repositories, promises improved crop management and yield. Despite requiring real-world implementation, Rice-ResNet marks a significant advancement in rice classification, fostering enriched digital experiences.</p></div>","PeriodicalId":29771,"journal":{"name":"Software Impacts","volume":"20 ","pages":"Article 100654"},"PeriodicalIF":1.3000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2665963824000423/pdfft?md5=7f6cac9662fee8181f8b6d8a112ac6a5&pid=1-s2.0-S2665963824000423-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Rice-ResNet: Rice classification and quality detection by transferred ResNet deep model\",\"authors\":\"Mohammadreza Razavi ,&nbsp;Samira Mavaddati ,&nbsp;Ziad Kobti ,&nbsp;Hamidreza Koohi\",\"doi\":\"10.1016/j.simpa.2024.100654\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Efficient classification and quality assessment of rice varieties are essential for market pricing, food safety, and consumer satisfaction in the global rice sector. Leveraging pre-trained ResNet architectures, Rice-ResNet significantly enhances feature extraction, ensuring accurate classification and quality detection of rice cultivars. This system, accessible in Python repositories, promises improved crop management and yield. Despite requiring real-world implementation, Rice-ResNet marks a significant advancement in rice classification, fostering enriched digital experiences.</p></div>\",\"PeriodicalId\":29771,\"journal\":{\"name\":\"Software Impacts\",\"volume\":\"20 \",\"pages\":\"Article 100654\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2665963824000423/pdfft?md5=7f6cac9662fee8181f8b6d8a112ac6a5&pid=1-s2.0-S2665963824000423-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Software Impacts\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2665963824000423\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Software Impacts","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2665963824000423","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0

摘要

高效的水稻品种分类和质量评估对于全球水稻行业的市场定价、食品安全和消费者满意度至关重要。利用预先训练的 ResNet 架构,Rice-ResNet 可显著增强特征提取,确保对水稻品种进行准确分类和质量检测。该系统可在 Python 存储库中访问,有望改善作物管理并提高产量。尽管需要在现实世界中实施,但 Rice-ResNet 标志着水稻分类领域的重大进步,促进了丰富的数字体验。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Rice-ResNet: Rice classification and quality detection by transferred ResNet deep model

Efficient classification and quality assessment of rice varieties are essential for market pricing, food safety, and consumer satisfaction in the global rice sector. Leveraging pre-trained ResNet architectures, Rice-ResNet significantly enhances feature extraction, ensuring accurate classification and quality detection of rice cultivars. This system, accessible in Python repositories, promises improved crop management and yield. Despite requiring real-world implementation, Rice-ResNet marks a significant advancement in rice classification, fostering enriched digital experiences.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Software Impacts
Software Impacts Software
CiteScore
2.70
自引率
9.50%
发文量
0
审稿时长
16 days
期刊最新文献
KNNOR-Reg: A python package for oversampling in imbalanced regression pff-oc: A space–time phase-field fracture optimal control framework Synthetic dataset generation system for vehicle detection Multi-browser VE: Enhancing internet browsing experience through virtual reality DeepPack3D: A Python package for online 3D bin packing optimization by deep reinforcement learning and constructive heuristics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1