{"title":"使用自动评估系统分析程序员新手和能手解决问题的行为","authors":"Yung-Ting Chuang, Hsin-Yu Chang","doi":"10.1016/j.scico.2024.103138","DOIUrl":null,"url":null,"abstract":"<div><h3>Background and Context</h3><p>In today's tech-driven world, programming courses are crucial. Yet, teaching programming is challenging, leading to high student failure rates. Understanding student learning patterns is key, but there's a lack of research utilizing tools to automatically collect and analyze interaction data for insights into student performance and behaviors.</p></div><div><h3>Objectives</h3><p>Study aims to compare problem-solving behaviors of novice and competent programmers during coding tests, identifying patterns and exploring relationships with program correctness.</p></div><div><h3>Method</h3><p>We built an online system with programming challenges to collect behavior data from novice and competent programmers. Our system analyzed data using various metrics to explore behavior-program correctness relationships.</p></div><div><h3>Findings</h3><p>Analysis showed distinct problem-solving behavior patterns. Competent programmers had fewer syntax errors, spent less time fixing bugs, and had higher program correctness. Novices made more syntax errors and spent more time fixing coding errors. Both groups used tabs for code structure, but competent programmers introduced unfamiliar variables more often and commented on them afterward. Emphasizing iterative revisions and active engagement enhances problem-solving skills and programming proficiency. Radar charts are effective for identifying improvement areas in teaching programming. The relationship between behavior and program correctness was positively correlated for competent programmers but not novices.</p></div><div><h3>Implications</h3><p>Study findings have implications for programming education. Radar charts help teachers identify course improvement areas. Novices can learn from competent programmers' behavior. Instructors should encourage continuous skill improvement through revisions and engagement. Identified unfamiliar programming aspects offer insights for targeted learning.</p></div>","PeriodicalId":49561,"journal":{"name":"Science of Computer Programming","volume":"237 ","pages":"Article 103138"},"PeriodicalIF":1.5000,"publicationDate":"2024-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analyzing novice and competent programmers' problem-solving behaviors using an automated evaluation system\",\"authors\":\"Yung-Ting Chuang, Hsin-Yu Chang\",\"doi\":\"10.1016/j.scico.2024.103138\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Background and Context</h3><p>In today's tech-driven world, programming courses are crucial. Yet, teaching programming is challenging, leading to high student failure rates. Understanding student learning patterns is key, but there's a lack of research utilizing tools to automatically collect and analyze interaction data for insights into student performance and behaviors.</p></div><div><h3>Objectives</h3><p>Study aims to compare problem-solving behaviors of novice and competent programmers during coding tests, identifying patterns and exploring relationships with program correctness.</p></div><div><h3>Method</h3><p>We built an online system with programming challenges to collect behavior data from novice and competent programmers. Our system analyzed data using various metrics to explore behavior-program correctness relationships.</p></div><div><h3>Findings</h3><p>Analysis showed distinct problem-solving behavior patterns. Competent programmers had fewer syntax errors, spent less time fixing bugs, and had higher program correctness. Novices made more syntax errors and spent more time fixing coding errors. Both groups used tabs for code structure, but competent programmers introduced unfamiliar variables more often and commented on them afterward. Emphasizing iterative revisions and active engagement enhances problem-solving skills and programming proficiency. Radar charts are effective for identifying improvement areas in teaching programming. The relationship between behavior and program correctness was positively correlated for competent programmers but not novices.</p></div><div><h3>Implications</h3><p>Study findings have implications for programming education. Radar charts help teachers identify course improvement areas. Novices can learn from competent programmers' behavior. Instructors should encourage continuous skill improvement through revisions and engagement. Identified unfamiliar programming aspects offer insights for targeted learning.</p></div>\",\"PeriodicalId\":49561,\"journal\":{\"name\":\"Science of Computer Programming\",\"volume\":\"237 \",\"pages\":\"Article 103138\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-05-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science of Computer Programming\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167642324000613\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science of Computer Programming","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167642324000613","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
Analyzing novice and competent programmers' problem-solving behaviors using an automated evaluation system
Background and Context
In today's tech-driven world, programming courses are crucial. Yet, teaching programming is challenging, leading to high student failure rates. Understanding student learning patterns is key, but there's a lack of research utilizing tools to automatically collect and analyze interaction data for insights into student performance and behaviors.
Objectives
Study aims to compare problem-solving behaviors of novice and competent programmers during coding tests, identifying patterns and exploring relationships with program correctness.
Method
We built an online system with programming challenges to collect behavior data from novice and competent programmers. Our system analyzed data using various metrics to explore behavior-program correctness relationships.
Findings
Analysis showed distinct problem-solving behavior patterns. Competent programmers had fewer syntax errors, spent less time fixing bugs, and had higher program correctness. Novices made more syntax errors and spent more time fixing coding errors. Both groups used tabs for code structure, but competent programmers introduced unfamiliar variables more often and commented on them afterward. Emphasizing iterative revisions and active engagement enhances problem-solving skills and programming proficiency. Radar charts are effective for identifying improvement areas in teaching programming. The relationship between behavior and program correctness was positively correlated for competent programmers but not novices.
Implications
Study findings have implications for programming education. Radar charts help teachers identify course improvement areas. Novices can learn from competent programmers' behavior. Instructors should encourage continuous skill improvement through revisions and engagement. Identified unfamiliar programming aspects offer insights for targeted learning.
期刊介绍:
Science of Computer Programming is dedicated to the distribution of research results in the areas of software systems development, use and maintenance, including the software aspects of hardware design.
The journal has a wide scope ranging from the many facets of methodological foundations to the details of technical issues andthe aspects of industrial practice.
The subjects of interest to SCP cover the entire spectrum of methods for the entire life cycle of software systems, including
• Requirements, specification, design, validation, verification, coding, testing, maintenance, metrics and renovation of software;
• Design, implementation and evaluation of programming languages;
• Programming environments, development tools, visualisation and animation;
• Management of the development process;
• Human factors in software, software for social interaction, software for social computing;
• Cyber physical systems, and software for the interaction between the physical and the machine;
• Software aspects of infrastructure services, system administration, and network management.