自 ∼60 ka 以来孟加拉湾从源到汇环境变化的磁响应

IF 3.2 2区 地球科学 Q2 GEOSCIENCES, MULTIDISCIPLINARY Paleoceanography and Paleoclimatology Pub Date : 2024-05-01 DOI:10.1029/2024pa004857
Yulong Guan, Zhaoxia Jiang, Sanzhong Li, Liang Chen, Yang Liu, Yuying Chen, Yuzhen Zhang, Long Chen, Liang Zhou, Zhengxin Yin
{"title":"自 ∼60 ka 以来孟加拉湾从源到汇环境变化的磁响应","authors":"Yulong Guan, Zhaoxia Jiang, Sanzhong Li, Liang Chen, Yang Liu, Yuying Chen, Yuzhen Zhang, Long Chen, Liang Zhou, Zhengxin Yin","doi":"10.1029/2024pa004857","DOIUrl":null,"url":null,"abstract":"The terrestrial magnetic minerals of marine sediments are utilized to track the climatic changes in the source area and the dynamic characteristics of sedimentation processes. However, due to the varied source‐to‐sink environments, the magnetic response to ambient climate cannot be generalized. Here, we conducted systematic environmental magnetic analyses on core CJ04‐50 from the Ninetyeast Ridge and investigated its magnetic response to source‐to‐sink environmental changes. Core CJ04‐50 covers the last 60 Kyr based on accelerator mass spectrometry (AMS) 14C dating and the relative paleointensity (RPI) record. Rare earth element (REE) results suggest that the terrestrial materials are fed by the Ganges‐Brahmaputra (G‐B) and Irrawaddy/Indo‐Burma Ranges. High/low magnetic mineral content corresponds to strong/weak terristrial input during the cold/warm period. This pattern differs from that in the East Asian marginal seas, which have a high magnetic mineral content in warm periods. It might be attributed to the heavier Indian summer monsoon (ISM) precipitation than that of East Asian summer monsoon. Excessive moisture (>1,500 mm/year) would not favor the formation and preservation of magnetic minerals in the source area during interglacials. By contrast, the enhanced physical weathering during glacials results in more magnetic contributions. A significant local magnetite dissolution occurred at the layer of Middle MIS 3, which may be caused by the non‐steady state diagenesis following deposition.","PeriodicalId":54239,"journal":{"name":"Paleoceanography and Paleoclimatology","volume":null,"pages":null},"PeriodicalIF":3.2000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Magnetic Response to the Source‐To‐Sink Environmental Changes in the Bay of Bengal Since ∼60 ka\",\"authors\":\"Yulong Guan, Zhaoxia Jiang, Sanzhong Li, Liang Chen, Yang Liu, Yuying Chen, Yuzhen Zhang, Long Chen, Liang Zhou, Zhengxin Yin\",\"doi\":\"10.1029/2024pa004857\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The terrestrial magnetic minerals of marine sediments are utilized to track the climatic changes in the source area and the dynamic characteristics of sedimentation processes. However, due to the varied source‐to‐sink environments, the magnetic response to ambient climate cannot be generalized. Here, we conducted systematic environmental magnetic analyses on core CJ04‐50 from the Ninetyeast Ridge and investigated its magnetic response to source‐to‐sink environmental changes. Core CJ04‐50 covers the last 60 Kyr based on accelerator mass spectrometry (AMS) 14C dating and the relative paleointensity (RPI) record. Rare earth element (REE) results suggest that the terrestrial materials are fed by the Ganges‐Brahmaputra (G‐B) and Irrawaddy/Indo‐Burma Ranges. High/low magnetic mineral content corresponds to strong/weak terristrial input during the cold/warm period. This pattern differs from that in the East Asian marginal seas, which have a high magnetic mineral content in warm periods. It might be attributed to the heavier Indian summer monsoon (ISM) precipitation than that of East Asian summer monsoon. Excessive moisture (>1,500 mm/year) would not favor the formation and preservation of magnetic minerals in the source area during interglacials. By contrast, the enhanced physical weathering during glacials results in more magnetic contributions. A significant local magnetite dissolution occurred at the layer of Middle MIS 3, which may be caused by the non‐steady state diagenesis following deposition.\",\"PeriodicalId\":54239,\"journal\":{\"name\":\"Paleoceanography and Paleoclimatology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Paleoceanography and Paleoclimatology\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1029/2024pa004857\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Paleoceanography and Paleoclimatology","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1029/2024pa004857","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

海洋沉积物的陆地磁性矿物可用于追踪源区的气候变化和沉积过程的动态特征。然而,由于源区到汇区的环境各不相同,磁性对环境气候的响应不能一概而论。在此,我们对九曲海脊的岩心 CJ04-50 进行了系统的环境磁分析,并研究了其对源-汇环境变化的磁响应。根据加速器质谱(AMS)14C 测定和相对古强度(RPI)记录,CJ04-50 岩心涵盖了过去 60K 年的时间。稀土元素(REE)结果表明,陆地材料由恒河-rahmaputra(G-B)山脉和伊洛瓦底江/印度-缅甸山脉提供。磁性矿物含量的高/低与冷/暖时期陆相输入的强/弱相对应。这种模式与东亚边缘海的模式不同,后者在温暖时期磁性矿物含量较高。这可能是由于印度夏季季风(ISM)的降水量比东亚夏季季风的降水量大。在间冰期,过多的水分(大于 1 500 毫米/年)不利于磁性矿物在源区的形成和保存。与此相反,冰川期物理风化作用的增强会产生更多的磁性。在中MIS 3层出现了明显的局部磁铁矿溶解现象,这可能是沉积后的非稳态成岩作用造成的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Magnetic Response to the Source‐To‐Sink Environmental Changes in the Bay of Bengal Since ∼60 ka
The terrestrial magnetic minerals of marine sediments are utilized to track the climatic changes in the source area and the dynamic characteristics of sedimentation processes. However, due to the varied source‐to‐sink environments, the magnetic response to ambient climate cannot be generalized. Here, we conducted systematic environmental magnetic analyses on core CJ04‐50 from the Ninetyeast Ridge and investigated its magnetic response to source‐to‐sink environmental changes. Core CJ04‐50 covers the last 60 Kyr based on accelerator mass spectrometry (AMS) 14C dating and the relative paleointensity (RPI) record. Rare earth element (REE) results suggest that the terrestrial materials are fed by the Ganges‐Brahmaputra (G‐B) and Irrawaddy/Indo‐Burma Ranges. High/low magnetic mineral content corresponds to strong/weak terristrial input during the cold/warm period. This pattern differs from that in the East Asian marginal seas, which have a high magnetic mineral content in warm periods. It might be attributed to the heavier Indian summer monsoon (ISM) precipitation than that of East Asian summer monsoon. Excessive moisture (>1,500 mm/year) would not favor the formation and preservation of magnetic minerals in the source area during interglacials. By contrast, the enhanced physical weathering during glacials results in more magnetic contributions. A significant local magnetite dissolution occurred at the layer of Middle MIS 3, which may be caused by the non‐steady state diagenesis following deposition.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Paleoceanography and Paleoclimatology
Paleoceanography and Paleoclimatology Earth and Planetary Sciences-Atmospheric Science
CiteScore
6.20
自引率
11.40%
发文量
107
期刊介绍: Paleoceanography and Paleoclimatology (PALO) publishes papers dealing with records of past environments, biota and climate. Understanding of the Earth system as it was in the past requires the employment of a wide range of approaches including marine and lacustrine sedimentology and speleothems; ice sheet formation and flow; stable isotope, trace element, and organic geochemistry; paleontology and molecular paleontology; evolutionary processes; mineralization in organisms; understanding tree-ring formation; seismic stratigraphy; physical, chemical, and biological oceanography; geochemical, climate and earth system modeling, and many others. The scope of this journal is regional to global, rather than local, and includes studies of any geologic age (Precambrian to Quaternary, including modern analogs). Within this framework, papers on the following topics are to be included: chronology, stratigraphy (where relevant to correlation of paleoceanographic events), paleoreconstructions, paleoceanographic modeling, paleocirculation (deep, intermediate, and shallow), paleoclimatology (e.g., paleowinds and cryosphere history), global sediment and geochemical cycles, anoxia, sea level changes and effects, relations between biotic evolution and paleoceanography, biotic crises, paleobiology (e.g., ecology of “microfossils” used in paleoceanography), techniques and approaches in paleoceanographic inferences, and modern paleoceanographic analogs, and quantitative and integrative analysis of coupled ocean-atmosphere-biosphere processes. Paleoceanographic and Paleoclimate studies enable us to use the past in order to gain information on possible future climatic and biotic developments: the past is the key to the future, just as much and maybe more than the present is the key to the past.
期刊最新文献
Extreme Planktic Foraminiferal Dwarfism Across the ETM2 in the Tethys Realm in Response to Warming Reconstruction of Cenozoic δ11Bsw Using a Gaussian Process Impact of Intra‐Skeletal Calcite on the Preservation of Coral Geochemistry and Implications for Paleoclimate Reconstruction Tropical Warming and Intensification of the West African Monsoon During the Miocene Climatic Optimum Shell Reworking Impacts on Climate Variability Reconstructions Using Individual Foraminiferal Analyses
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1