细胞外基质硬度通过机械敏感性 Piezo1 通道调控 Ca2+ 动态介导胰岛分泌胰岛素

Q1 Medicine Matrix Biology Plus Pub Date : 2024-05-17 DOI:10.1016/j.mbplus.2024.100148
Chelsea G. Johansen , Keifer Holcomb , Amit Sela , Stephanie Morrall , Daewon Park , Nikki L. Farnsworth
{"title":"细胞外基质硬度通过机械敏感性 Piezo1 通道调控 Ca2+ 动态介导胰岛分泌胰岛素","authors":"Chelsea G. Johansen ,&nbsp;Keifer Holcomb ,&nbsp;Amit Sela ,&nbsp;Stephanie Morrall ,&nbsp;Daewon Park ,&nbsp;Nikki L. Farnsworth","doi":"10.1016/j.mbplus.2024.100148","DOIUrl":null,"url":null,"abstract":"<div><p>The pancreatic islet is surrounded by ECM that provides both biochemical and mechanical cues to the islet β-cell to regulate cell survival and insulin secretion. Changes in ECM composition and mechanical properties drive β-cell dysfunction in many pancreatic diseases. While several studies have characterized changes in islet insulin secretion with changes in substrate stiffness, little is known about the mechanotransduction signaling driving altered islet function in response to mechanical cues. We hypothesized that increasing matrix stiffness will lead to insulin secretion dysfunction by opening the mechanosensitive ion channel Piezo1 and disrupting intracellular Ca<sup>2+</sup> dynamics in mouse and human islets. To test our hypothesis, mouse and human cadaveric islets were encapsulated in a biomimetic reverse thermal gel (RTG) scaffold with tailorable stiffness that allows formation of islet focal adhesions with the scaffold and activation of Piezo1 in 3D. Our results indicate that increased scaffold stiffness causes insulin secretion dysfunction mediated by increases in Ca<sup>2+</sup> influx and altered Ca<sup>2+</sup> dynamics via opening of the mechanosensitive Piezo1 channel. Additionally, inhibition of Piezo1 rescued glucose-stimulated insulin secretion (GSIS) in islets in stiff scaffolds. Overall, our results emphasize the role mechanical properties of the islet microenvironment plays in regulating function. It also supports further investigation into the modulation of Piezo1 channel activity to restore islet function in diseases like type 2 diabetes (T2D) and pancreatic cancer where fibrosis of the <em>peri</em>-islet ECM leads to increased tissue stiffness and islet dysfunction.</p></div>","PeriodicalId":52317,"journal":{"name":"Matrix Biology Plus","volume":"22 ","pages":"Article 100148"},"PeriodicalIF":0.0000,"publicationDate":"2024-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590028524000085/pdfft?md5=d2836de4464c289026850dc0eaad9f95&pid=1-s2.0-S2590028524000085-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Extracellular matrix stiffness mediates insulin secretion in pancreatic islets via mechanosensitive Piezo1 channel regulated Ca2+ dynamics\",\"authors\":\"Chelsea G. Johansen ,&nbsp;Keifer Holcomb ,&nbsp;Amit Sela ,&nbsp;Stephanie Morrall ,&nbsp;Daewon Park ,&nbsp;Nikki L. Farnsworth\",\"doi\":\"10.1016/j.mbplus.2024.100148\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The pancreatic islet is surrounded by ECM that provides both biochemical and mechanical cues to the islet β-cell to regulate cell survival and insulin secretion. Changes in ECM composition and mechanical properties drive β-cell dysfunction in many pancreatic diseases. While several studies have characterized changes in islet insulin secretion with changes in substrate stiffness, little is known about the mechanotransduction signaling driving altered islet function in response to mechanical cues. We hypothesized that increasing matrix stiffness will lead to insulin secretion dysfunction by opening the mechanosensitive ion channel Piezo1 and disrupting intracellular Ca<sup>2+</sup> dynamics in mouse and human islets. To test our hypothesis, mouse and human cadaveric islets were encapsulated in a biomimetic reverse thermal gel (RTG) scaffold with tailorable stiffness that allows formation of islet focal adhesions with the scaffold and activation of Piezo1 in 3D. Our results indicate that increased scaffold stiffness causes insulin secretion dysfunction mediated by increases in Ca<sup>2+</sup> influx and altered Ca<sup>2+</sup> dynamics via opening of the mechanosensitive Piezo1 channel. Additionally, inhibition of Piezo1 rescued glucose-stimulated insulin secretion (GSIS) in islets in stiff scaffolds. Overall, our results emphasize the role mechanical properties of the islet microenvironment plays in regulating function. It also supports further investigation into the modulation of Piezo1 channel activity to restore islet function in diseases like type 2 diabetes (T2D) and pancreatic cancer where fibrosis of the <em>peri</em>-islet ECM leads to increased tissue stiffness and islet dysfunction.</p></div>\",\"PeriodicalId\":52317,\"journal\":{\"name\":\"Matrix Biology Plus\",\"volume\":\"22 \",\"pages\":\"Article 100148\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2590028524000085/pdfft?md5=d2836de4464c289026850dc0eaad9f95&pid=1-s2.0-S2590028524000085-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Matrix Biology Plus\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2590028524000085\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Matrix Biology Plus","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590028524000085","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0

摘要

胰岛被 ECM 包围,ECM 为胰岛 β 细胞提供生化和机械线索,以调节细胞存活和胰岛素分泌。在许多胰腺疾病中,ECM 成分和机械特性的变化会导致 β 细胞功能障碍。虽然有几项研究描述了胰岛胰岛素分泌随基质硬度变化而变化的特点,但对机械传导信号驱动胰岛功能对机械信号的改变知之甚少。我们假设,基质硬度的增加将通过打开小鼠和人类胰岛的机械敏感性离子通道 Piezo1 和破坏细胞内 Ca2+ 动态,导致胰岛素分泌功能障碍。为了验证我们的假设,我们将小鼠和人类尸体胰岛封装在生物仿生反向热凝胶(RTG)支架中,该支架具有可定制的硬度,允许胰岛与支架形成灶粘连并激活三维中的 Piezo1。我们的研究结果表明,支架硬度增加会导致胰岛素分泌功能障碍,而胰岛素分泌功能障碍是由 Ca2+ 流入增加和通过打开机械敏感性 Piezo1 通道改变 Ca2+ 动态介导的。此外,抑制 Piezo1 还能挽救僵硬支架中胰岛的葡萄糖刺激胰岛素分泌(GSIS)。总之,我们的研究结果强调了胰岛微环境的机械特性在调节功能中的作用。它还支持进一步研究如何通过调节 Piezo1 通道活性来恢复 2 型糖尿病(T2D)和胰腺癌等疾病的胰岛功能,因为在这些疾病中,胰岛周围 ECM 的纤维化会导致组织硬度增加和胰岛功能障碍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Extracellular matrix stiffness mediates insulin secretion in pancreatic islets via mechanosensitive Piezo1 channel regulated Ca2+ dynamics

The pancreatic islet is surrounded by ECM that provides both biochemical and mechanical cues to the islet β-cell to regulate cell survival and insulin secretion. Changes in ECM composition and mechanical properties drive β-cell dysfunction in many pancreatic diseases. While several studies have characterized changes in islet insulin secretion with changes in substrate stiffness, little is known about the mechanotransduction signaling driving altered islet function in response to mechanical cues. We hypothesized that increasing matrix stiffness will lead to insulin secretion dysfunction by opening the mechanosensitive ion channel Piezo1 and disrupting intracellular Ca2+ dynamics in mouse and human islets. To test our hypothesis, mouse and human cadaveric islets were encapsulated in a biomimetic reverse thermal gel (RTG) scaffold with tailorable stiffness that allows formation of islet focal adhesions with the scaffold and activation of Piezo1 in 3D. Our results indicate that increased scaffold stiffness causes insulin secretion dysfunction mediated by increases in Ca2+ influx and altered Ca2+ dynamics via opening of the mechanosensitive Piezo1 channel. Additionally, inhibition of Piezo1 rescued glucose-stimulated insulin secretion (GSIS) in islets in stiff scaffolds. Overall, our results emphasize the role mechanical properties of the islet microenvironment plays in regulating function. It also supports further investigation into the modulation of Piezo1 channel activity to restore islet function in diseases like type 2 diabetes (T2D) and pancreatic cancer where fibrosis of the peri-islet ECM leads to increased tissue stiffness and islet dysfunction.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Matrix Biology Plus
Matrix Biology Plus Medicine-Histology
CiteScore
9.00
自引率
0.00%
发文量
25
审稿时长
105 days
期刊最新文献
A human stem cell-derived model reveals pathologic extracellular matrix remodeling in diabetic podocyte injury Bone quality relies on hyaluronan synthesis – Insights from mice with complete knockout of hyaluronan synthase expression Profiling of collagen and extracellular matrix deposition from cell culture using in vitro ExtraCellular matrix mass spectrometry imaging (ivECM-MSI) Obesity-driven changes in breast tissue exhibit a pro-angiogenic extracellular matrix signature The importance of matrix in cardiomyogenesis: Defined substrates for maturation and chamber specificity
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1