Risk-averse Reinforcement Learning for Portfolio Optimization
This investigation explores Reinforcement Learning (RL) for dynamic portfolio optimization with risk assessment. The challenges include market complexity, uncertain reactions, and regulatory requirements for risk-averse decisions. Our solution leverages Bayesian Neural Network (BNN) to capture uncertainties. We successfully implemented a risk-averse Reinforcement Learning algorithm, achieving 18 percent lower risk. Reinforcement Learning with risk-aversion shows promise for optimizing portfolios for risk-averse investors.
期刊介绍:
The ICT Express journal published by the Korean Institute of Communications and Information Sciences (KICS) is an international, peer-reviewed research publication covering all aspects of information and communication technology. The journal aims to publish research that helps advance the theoretical and practical understanding of ICT convergence, platform technologies, communication networks, and device technologies. The technology advancement in information and communication technology (ICT) sector enables portable devices to be always connected while supporting high data rate, resulting in the recent popularity of smartphones that have a considerable impact in economic and social development.