具有不同弧形曲线的弹头的气动特性分析

IF 1.1 4区 工程技术 Q4 MECHANICS Journal of Applied Fluid Mechanics Pub Date : 2024-05-01 DOI:10.47176/jafm.17.05.2333
B. Hao, Q. Jiang, C. Xu, L. Liu
{"title":"具有不同弧形曲线的弹头的气动特性分析","authors":"B. Hao, Q. Jiang, C. Xu, L. Liu","doi":"10.47176/jafm.17.05.2333","DOIUrl":null,"url":null,"abstract":"The bullet shape is critical in efficient bullet design because it affects the lift and drag forces. This paper proposes a new bullet shape with a logarithmic curve and analyzes the lift and drag coefficients of bullets with different curves under different angles of attack. The results are compared with a bullet whose shape is described by the power law curve. Fluent simulations demonstrate that the optimal power exponent values are 0.65, 0.6, and 0.65 for the bullet with the power law curve and 1.3, 1, and 1 for the bullet with the logarithmic curve at 0°, 30°, and 40° angles of attack, respectively. At a 0° angle of attack, the lift coefficient of the logarithmic curve is the largest. The lift force of the bullet with the logarithmic curve is 129.4% higher than that with the von Karman curve. The drag coefficient is the largest for the bullet with the rectilinear curve; it is 1.30% larger than that of the bullet with the logarithmic curve. At 30° and 40° angles of attack, the lift coefficient of the bullet with the power law curve is larger. The difference in the lift coefficients between the two angles of attack is 18.47%. The bullet’s drag coefficient is the largest for the logarithmic curve, and the difference in the drag coefficients between the two angles of attack is 18.59%.","PeriodicalId":49041,"journal":{"name":"Journal of Applied Fluid Mechanics","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Aerodynamic Characterization of Bullet Heads with Different Arcuate Curves\",\"authors\":\"B. Hao, Q. Jiang, C. Xu, L. Liu\",\"doi\":\"10.47176/jafm.17.05.2333\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The bullet shape is critical in efficient bullet design because it affects the lift and drag forces. This paper proposes a new bullet shape with a logarithmic curve and analyzes the lift and drag coefficients of bullets with different curves under different angles of attack. The results are compared with a bullet whose shape is described by the power law curve. Fluent simulations demonstrate that the optimal power exponent values are 0.65, 0.6, and 0.65 for the bullet with the power law curve and 1.3, 1, and 1 for the bullet with the logarithmic curve at 0°, 30°, and 40° angles of attack, respectively. At a 0° angle of attack, the lift coefficient of the logarithmic curve is the largest. The lift force of the bullet with the logarithmic curve is 129.4% higher than that with the von Karman curve. The drag coefficient is the largest for the bullet with the rectilinear curve; it is 1.30% larger than that of the bullet with the logarithmic curve. At 30° and 40° angles of attack, the lift coefficient of the bullet with the power law curve is larger. The difference in the lift coefficients between the two angles of attack is 18.47%. The bullet’s drag coefficient is the largest for the logarithmic curve, and the difference in the drag coefficients between the two angles of attack is 18.59%.\",\"PeriodicalId\":49041,\"journal\":{\"name\":\"Journal of Applied Fluid Mechanics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2024-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Applied Fluid Mechanics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.47176/jafm.17.05.2333\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Fluid Mechanics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.47176/jafm.17.05.2333","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

摘要

子弹形状对有效的子弹设计至关重要,因为它会影响升力和阻力。本文提出了一种新的对数曲线子弹形状,并分析了不同攻角下不同曲线子弹的升力和阻力系数。结果与幂律曲线描述形状的子弹进行了比较。流体模拟表明,在 0°、30° 和 40°攻角下,幂律曲线子弹的最佳功率指数值分别为 0.65、0.6 和 0.65,对数曲线子弹的最佳功率指数值分别为 1.3、1 和 1。在 0° 攻角时,对数曲线的升力系数最大。采用对数曲线的子弹升力比采用 von Karman 曲线的子弹升力高 129.4%。直线曲线子弹的阻力系数最大,比对数曲线子弹的阻力系数大 1.30%。在 30° 和 40° 攻角时,幂律曲线子弹的升力系数更大。两个攻角的升力系数相差 18.47%。对数曲线的子弹阻力系数最大,两个攻角的阻力系数相差 18.59%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Aerodynamic Characterization of Bullet Heads with Different Arcuate Curves
The bullet shape is critical in efficient bullet design because it affects the lift and drag forces. This paper proposes a new bullet shape with a logarithmic curve and analyzes the lift and drag coefficients of bullets with different curves under different angles of attack. The results are compared with a bullet whose shape is described by the power law curve. Fluent simulations demonstrate that the optimal power exponent values are 0.65, 0.6, and 0.65 for the bullet with the power law curve and 1.3, 1, and 1 for the bullet with the logarithmic curve at 0°, 30°, and 40° angles of attack, respectively. At a 0° angle of attack, the lift coefficient of the logarithmic curve is the largest. The lift force of the bullet with the logarithmic curve is 129.4% higher than that with the von Karman curve. The drag coefficient is the largest for the bullet with the rectilinear curve; it is 1.30% larger than that of the bullet with the logarithmic curve. At 30° and 40° angles of attack, the lift coefficient of the bullet with the power law curve is larger. The difference in the lift coefficients between the two angles of attack is 18.47%. The bullet’s drag coefficient is the largest for the logarithmic curve, and the difference in the drag coefficients between the two angles of attack is 18.59%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Applied Fluid Mechanics
Journal of Applied Fluid Mechanics THERMODYNAMICS-MECHANICS
CiteScore
2.00
自引率
20.00%
发文量
138
审稿时长
>12 weeks
期刊介绍: The Journal of Applied Fluid Mechanics (JAFM) is an international, peer-reviewed journal which covers a wide range of theoretical, numerical and experimental aspects in fluid mechanics. The emphasis is on the applications in different engineering fields rather than on pure mathematical or physical aspects in fluid mechanics. Although many high quality journals pertaining to different aspects of fluid mechanics presently exist, research in the field is rapidly escalating. The motivation for this new fluid mechanics journal is driven by the following points: (1) there is a need to have an e-journal accessible to all fluid mechanics researchers, (2) scientists from third- world countries need a venue that does not incur publication costs, (3) quality papers deserve rapid and fast publication through an efficient peer review process, and (4) an outlet is needed for rapid dissemination of fluid mechanics conferences held in Asian countries. Pertaining to this latter point, there presently exist some excellent conferences devoted to the promotion of fluid mechanics in the region such as the Asian Congress of Fluid Mechanics which began in 1980 and nominally takes place in one of the Asian countries every two years. We hope that the proposed journal provides and additional impetus for promoting applied fluids research and associated activities in this continent. The journal is under the umbrella of the Physics Society of Iran with the collaboration of Isfahan University of Technology (IUT) .
期刊最新文献
Experimental and LES Studies of Propane–air Premixed Gases in Pipelines Containing Mixed Obstacles Influence of a Modified Weir Profile on Velocity Field and Dissipation Rate in Stepped Spillways: A Comparative Study Using Physical Models and Computational Fluid Dynamics Numerical Analysis of Mechanism on Heat Transfer Deterioration of Hexamethyldisiloxane in a Vertical Upward Tube at Supercritical Pressures Numerical Simulation Study of the Effect of Outlet on the Axial Vortex Separator Numerical Study on the Influence of Plasma Actuation on the Cavitation Characteristics of Hydrofoil
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1