Chen-xue Jiang , Ying Li , Chi Yao , Jing Li , Ke Jing , Sui-sui Zhang , Cheng Liu , Lian-fang Zhao
{"title":"厌氧活性污泥中磷酸甲酚二苯酯的生物降解:降解特征、微生物群落演替和毒性评估","authors":"Chen-xue Jiang , Ying Li , Chi Yao , Jing Li , Ke Jing , Sui-sui Zhang , Cheng Liu , Lian-fang Zhao","doi":"10.1016/j.wse.2024.05.002","DOIUrl":null,"url":null,"abstract":"<div><div>Cresyl diphenyl phosphate (CDP), an emerging aryl organophosphate ester (OPE), exhibits potential toxic effects and is frequently found in diverse environmental media, thereby raising concerns about environmental pollution. Biodegradation demonstrates substantial potential for CDP removal from the environment. This study investigated the biodegradation mechanisms of CDP using anaerobic activated sludge (AnAS). The biodegradation of 1-mg/L CDP followed a first-order kinetic model with a degradation kinetic constant of 0.943 d<sup>−1</sup>, and the addition of different electron acceptors affected the degradation rate. High-resolution mass spectrometry identified seven transformation products (TPs) of CDP. The pathways of CDP degradation in anaerobic conditions were proposed, with carboxylation products being the most dominant intermediate products. The structure of the anaerobic microbial community at different degradation time points in CDP-amended microcosms was examined. The linear discriminant analysis (LDA) of effect size (LEfSe) potentially underscored the pivotal role of <em>Methyloversatilis</em> in CDP biodegradation. Zebrafish embryotoxicity experiments revealed both lethal and morphogenetic impacts of CDP on zebrafish embryos. The survival rate, hatching rate, and body length indicators of zebrafish embryos underscored the detoxification of CDP and its resultant intermediates by AnAS. This study offers new insights into the fate and biodegradation mechanisms of CDP in wastewater treatment plants.</div></div>","PeriodicalId":23628,"journal":{"name":"Water science and engineering","volume":"18 1","pages":"Pages 41-50"},"PeriodicalIF":3.7000,"publicationDate":"2024-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Biodegradation of cresyl diphenyl phosphate in anaerobic activated sludge: Degradation characteristics, microbial community succession, and toxicity assessment\",\"authors\":\"Chen-xue Jiang , Ying Li , Chi Yao , Jing Li , Ke Jing , Sui-sui Zhang , Cheng Liu , Lian-fang Zhao\",\"doi\":\"10.1016/j.wse.2024.05.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Cresyl diphenyl phosphate (CDP), an emerging aryl organophosphate ester (OPE), exhibits potential toxic effects and is frequently found in diverse environmental media, thereby raising concerns about environmental pollution. Biodegradation demonstrates substantial potential for CDP removal from the environment. This study investigated the biodegradation mechanisms of CDP using anaerobic activated sludge (AnAS). The biodegradation of 1-mg/L CDP followed a first-order kinetic model with a degradation kinetic constant of 0.943 d<sup>−1</sup>, and the addition of different electron acceptors affected the degradation rate. High-resolution mass spectrometry identified seven transformation products (TPs) of CDP. The pathways of CDP degradation in anaerobic conditions were proposed, with carboxylation products being the most dominant intermediate products. The structure of the anaerobic microbial community at different degradation time points in CDP-amended microcosms was examined. The linear discriminant analysis (LDA) of effect size (LEfSe) potentially underscored the pivotal role of <em>Methyloversatilis</em> in CDP biodegradation. Zebrafish embryotoxicity experiments revealed both lethal and morphogenetic impacts of CDP on zebrafish embryos. The survival rate, hatching rate, and body length indicators of zebrafish embryos underscored the detoxification of CDP and its resultant intermediates by AnAS. This study offers new insights into the fate and biodegradation mechanisms of CDP in wastewater treatment plants.</div></div>\",\"PeriodicalId\":23628,\"journal\":{\"name\":\"Water science and engineering\",\"volume\":\"18 1\",\"pages\":\"Pages 41-50\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-05-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Water science and engineering\",\"FirstCategoryId\":\"1087\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1674237024000504\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"WATER RESOURCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water science and engineering","FirstCategoryId":"1087","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1674237024000504","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"WATER RESOURCES","Score":null,"Total":0}
Biodegradation of cresyl diphenyl phosphate in anaerobic activated sludge: Degradation characteristics, microbial community succession, and toxicity assessment
Cresyl diphenyl phosphate (CDP), an emerging aryl organophosphate ester (OPE), exhibits potential toxic effects and is frequently found in diverse environmental media, thereby raising concerns about environmental pollution. Biodegradation demonstrates substantial potential for CDP removal from the environment. This study investigated the biodegradation mechanisms of CDP using anaerobic activated sludge (AnAS). The biodegradation of 1-mg/L CDP followed a first-order kinetic model with a degradation kinetic constant of 0.943 d−1, and the addition of different electron acceptors affected the degradation rate. High-resolution mass spectrometry identified seven transformation products (TPs) of CDP. The pathways of CDP degradation in anaerobic conditions were proposed, with carboxylation products being the most dominant intermediate products. The structure of the anaerobic microbial community at different degradation time points in CDP-amended microcosms was examined. The linear discriminant analysis (LDA) of effect size (LEfSe) potentially underscored the pivotal role of Methyloversatilis in CDP biodegradation. Zebrafish embryotoxicity experiments revealed both lethal and morphogenetic impacts of CDP on zebrafish embryos. The survival rate, hatching rate, and body length indicators of zebrafish embryos underscored the detoxification of CDP and its resultant intermediates by AnAS. This study offers new insights into the fate and biodegradation mechanisms of CDP in wastewater treatment plants.
期刊介绍:
Water Science and Engineering journal is an international, peer-reviewed research publication covering new concepts, theories, methods, and techniques related to water issues. The journal aims to publish research that helps advance the theoretical and practical understanding of water resources, aquatic environment, aquatic ecology, and water engineering, with emphases placed on the innovation and applicability of science and technology in large-scale hydropower project construction, large river and lake regulation, inter-basin water transfer, hydroelectric energy development, ecological restoration, the development of new materials, and sustainable utilization of water resources.