{"title":"针对复杂结构和严重地形的通用数据驱动全波形反演","authors":"Mahdi Saadat, Hosein Hashemi, Majid Nabi-Bidhendi","doi":"10.1016/j.petsci.2024.05.002","DOIUrl":null,"url":null,"abstract":"<div><div>Traditionally, simplification has been used in scientific modeling practices. However, recent advancements in deep learning techniques have provided a means to represent complex models. As a result, deep neural networks should be able to approximate the complex models, with a high degree of generalization. To achieve generalization, it is necessary to have a diverse range of examples in the training of the neural network, for example in data-driven FWI, training data should cover the expected subsurface models. To meet this requirement, we porposed a method to create geologically meaningful velocity models with complex structures and severe topography. However, it is important to note that generalization comes with its own set of challenges.</div><div>Because of significant variation in topography of the generated velocity models, we need to include this information as an additional input data in training of the network. Therefore, we have transformed the seismic data to a fixed datum to incorporate geometric information. Additionally, we have enhanced the network's performance by introducing a term in the network loss function. Multiple metrics have been employed to evaluate the performance of the network. The results indicate that by providing the necessary information to the network and employing computational techniques to refine the model's accuracy, deep neural networks are capable of accurately estimating velocity models in complex environments characterized by extreme topography.</div></div>","PeriodicalId":19938,"journal":{"name":"Petroleum Science","volume":"21 6","pages":"Pages 4025-4033"},"PeriodicalIF":6.0000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Generalizable data driven full waveform inversion for complex structures and severe topographies\",\"authors\":\"Mahdi Saadat, Hosein Hashemi, Majid Nabi-Bidhendi\",\"doi\":\"10.1016/j.petsci.2024.05.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Traditionally, simplification has been used in scientific modeling practices. However, recent advancements in deep learning techniques have provided a means to represent complex models. As a result, deep neural networks should be able to approximate the complex models, with a high degree of generalization. To achieve generalization, it is necessary to have a diverse range of examples in the training of the neural network, for example in data-driven FWI, training data should cover the expected subsurface models. To meet this requirement, we porposed a method to create geologically meaningful velocity models with complex structures and severe topography. However, it is important to note that generalization comes with its own set of challenges.</div><div>Because of significant variation in topography of the generated velocity models, we need to include this information as an additional input data in training of the network. Therefore, we have transformed the seismic data to a fixed datum to incorporate geometric information. Additionally, we have enhanced the network's performance by introducing a term in the network loss function. Multiple metrics have been employed to evaluate the performance of the network. The results indicate that by providing the necessary information to the network and employing computational techniques to refine the model's accuracy, deep neural networks are capable of accurately estimating velocity models in complex environments characterized by extreme topography.</div></div>\",\"PeriodicalId\":19938,\"journal\":{\"name\":\"Petroleum Science\",\"volume\":\"21 6\",\"pages\":\"Pages 4025-4033\"},\"PeriodicalIF\":6.0000,\"publicationDate\":\"2024-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Petroleum Science\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1995822624001195\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Petroleum Science","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1995822624001195","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Generalizable data driven full waveform inversion for complex structures and severe topographies
Traditionally, simplification has been used in scientific modeling practices. However, recent advancements in deep learning techniques have provided a means to represent complex models. As a result, deep neural networks should be able to approximate the complex models, with a high degree of generalization. To achieve generalization, it is necessary to have a diverse range of examples in the training of the neural network, for example in data-driven FWI, training data should cover the expected subsurface models. To meet this requirement, we porposed a method to create geologically meaningful velocity models with complex structures and severe topography. However, it is important to note that generalization comes with its own set of challenges.
Because of significant variation in topography of the generated velocity models, we need to include this information as an additional input data in training of the network. Therefore, we have transformed the seismic data to a fixed datum to incorporate geometric information. Additionally, we have enhanced the network's performance by introducing a term in the network loss function. Multiple metrics have been employed to evaluate the performance of the network. The results indicate that by providing the necessary information to the network and employing computational techniques to refine the model's accuracy, deep neural networks are capable of accurately estimating velocity models in complex environments characterized by extreme topography.
期刊介绍:
Petroleum Science is the only English journal in China on petroleum science and technology that is intended for professionals engaged in petroleum science research and technical applications all over the world, as well as the managerial personnel of oil companies. It covers petroleum geology, petroleum geophysics, petroleum engineering, petrochemistry & chemical engineering, petroleum mechanics, and economic management. It aims to introduce the latest results in oil industry research in China, promote cooperation in petroleum science research between China and the rest of the world, and build a bridge for scientific communication between China and the world.