提高硫化氢的去除效率:选定功能化石墨烯基材料的 DFT 研究

IF 3.1 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Carbon Trends Pub Date : 2024-05-14 DOI:10.1016/j.cartre.2024.100362
Toyese Oyegoke , Adnan Aliyu , Maryann I. Uzochuwu , Yahweh Hassan
{"title":"提高硫化氢的去除效率:选定功能化石墨烯基材料的 DFT 研究","authors":"Toyese Oyegoke ,&nbsp;Adnan Aliyu ,&nbsp;Maryann I. Uzochuwu ,&nbsp;Yahweh Hassan","doi":"10.1016/j.cartre.2024.100362","DOIUrl":null,"url":null,"abstract":"<div><p>In response to the escalating demand for cleaner energy sources, this study investigates the potential of carefully selected functionalized graphene-based materials for enhancing hydrogen sulphide (H<sub>2</sub>S) removal in fuel streams, utilizing semi-empirical and density functional theory (DFT) calculations for molecular-level insights. A particular focus is placed on aliphatic methyl (-CH), alcohol (-COH), carboxylate (-COO), carbonyl (-CO), and acid (-COOH) -functionalized graphene, aiming to bridge gaps between desulphurization methods and graphene applications, specifically targeting H<sub>2</sub>S removal. Through extensive computational analyses, the research unravels the intricate interactions between chosen functionalized graphene materials and sulfur compounds like H<sub>2</sub>S, emphasizing mechanisms contributing to improved desulphurization efficiency. Our study's analysis highlights the superior performance of carboxylate (-COO)-functionalized graphene, mainly through dissociative adsorption mechanisms. The study systematically evaluates the influence of selected functional groups on adsorption activity, emphasizing the significance of dissociation. Overall, this research advances desulphurization strategies and underscores the potential of functionalized graphene in sustainable energy solutions.</p></div>","PeriodicalId":52629,"journal":{"name":"Carbon Trends","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2024-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2667056924000439/pdfft?md5=6abc0f172c7b391a603bca7fe8906b27&pid=1-s2.0-S2667056924000439-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Enhancing hydrogen sulphide removal efficiency: A DFT study on selected functionalized graphene-based materials\",\"authors\":\"Toyese Oyegoke ,&nbsp;Adnan Aliyu ,&nbsp;Maryann I. Uzochuwu ,&nbsp;Yahweh Hassan\",\"doi\":\"10.1016/j.cartre.2024.100362\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In response to the escalating demand for cleaner energy sources, this study investigates the potential of carefully selected functionalized graphene-based materials for enhancing hydrogen sulphide (H<sub>2</sub>S) removal in fuel streams, utilizing semi-empirical and density functional theory (DFT) calculations for molecular-level insights. A particular focus is placed on aliphatic methyl (-CH), alcohol (-COH), carboxylate (-COO), carbonyl (-CO), and acid (-COOH) -functionalized graphene, aiming to bridge gaps between desulphurization methods and graphene applications, specifically targeting H<sub>2</sub>S removal. Through extensive computational analyses, the research unravels the intricate interactions between chosen functionalized graphene materials and sulfur compounds like H<sub>2</sub>S, emphasizing mechanisms contributing to improved desulphurization efficiency. Our study's analysis highlights the superior performance of carboxylate (-COO)-functionalized graphene, mainly through dissociative adsorption mechanisms. The study systematically evaluates the influence of selected functional groups on adsorption activity, emphasizing the significance of dissociation. Overall, this research advances desulphurization strategies and underscores the potential of functionalized graphene in sustainable energy solutions.</p></div>\",\"PeriodicalId\":52629,\"journal\":{\"name\":\"Carbon Trends\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-05-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2667056924000439/pdfft?md5=6abc0f172c7b391a603bca7fe8906b27&pid=1-s2.0-S2667056924000439-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Carbon Trends\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2667056924000439\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbon Trends","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667056924000439","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

为了满足日益增长的清洁能源需求,本研究利用半经验和密度泛函理论(DFT)计算,从分子层面深入探讨了精心挑选的功能化石墨烯基材料在提高燃料流中硫化氢(H2S)去除率方面的潜力。该研究特别关注脂肪族甲基 (-CH)、醇 (-COH)、羧酸盐 (-COO)、羰基 (-CO) 和酸 (-COOH) 功能化石墨烯,旨在弥合脱硫方法和石墨烯应用之间的差距,尤其是针对 H2S 的去除。通过广泛的计算分析,研究揭示了所选功能化石墨烯材料与硫化合物(如 H2S)之间错综复杂的相互作用,强调了有助于提高脱硫效率的机制。我们的研究分析凸显了羧酸盐 (-COO) 功能化石墨烯的卓越性能,这主要是通过离解吸附机制实现的。研究系统地评估了选定官能团对吸附活性的影响,强调了离解的重要性。总之,这项研究推进了脱硫策略,并强调了功能化石墨烯在可持续能源解决方案中的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Enhancing hydrogen sulphide removal efficiency: A DFT study on selected functionalized graphene-based materials

In response to the escalating demand for cleaner energy sources, this study investigates the potential of carefully selected functionalized graphene-based materials for enhancing hydrogen sulphide (H2S) removal in fuel streams, utilizing semi-empirical and density functional theory (DFT) calculations for molecular-level insights. A particular focus is placed on aliphatic methyl (-CH), alcohol (-COH), carboxylate (-COO), carbonyl (-CO), and acid (-COOH) -functionalized graphene, aiming to bridge gaps between desulphurization methods and graphene applications, specifically targeting H2S removal. Through extensive computational analyses, the research unravels the intricate interactions between chosen functionalized graphene materials and sulfur compounds like H2S, emphasizing mechanisms contributing to improved desulphurization efficiency. Our study's analysis highlights the superior performance of carboxylate (-COO)-functionalized graphene, mainly through dissociative adsorption mechanisms. The study systematically evaluates the influence of selected functional groups on adsorption activity, emphasizing the significance of dissociation. Overall, this research advances desulphurization strategies and underscores the potential of functionalized graphene in sustainable energy solutions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Carbon Trends
Carbon Trends Materials Science-Materials Science (miscellaneous)
CiteScore
4.60
自引率
0.00%
发文量
88
审稿时长
77 days
期刊最新文献
Cornstarch as a green binder in supercapacitors: Understanding the effect of binder on the charge storage mechanism The effect of pyrolysis heating rate on the mesoporosity of Pluronic F-127 templated carbon xerogels Extraction, and characterization of CNC from waste sugarcane leaf sheath as a reinforcement of multifunctional bio-nanocomposite material: A waste to wealth approach Waste biomass-derived activated carbons for selective oxygen adsorption Carbonaceous matrixes-based free-standing electrode materials for energy storage
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1