{"title":"动态高辐射通量下瓦楞纸板的自燃","authors":"","doi":"10.1016/j.dt.2024.05.010","DOIUrl":null,"url":null,"abstract":"<div><div>Understanding the response of solid combustibles under high radiant fluxes is critical in predicting the thermal damage from extreme scenarios. Unlike the more moderate radiant fluxes in conventional hydrocarbon fires, extreme events such as strong explosion, concentrated sunlight and directed energy can generate dynamic radiant fluxes at the MW/m<sup>2</sup> level, creating a unique threat to materials. This study investigates the pyrolysis and spontaneous ignition behaviors of corrugated cardboard by using both experimental and numerical methods, under 10-cm dynamic high radiant fluxes ranging from 0.2 to 1.25 MW/m<sup>2</sup> for 10 s. The spontaneous ignition process at dynamic high radiant fluxes was recorded and quantified. Two ignition modes were found at the critical radiant flux of 0.4 MW/m<sup>2</sup>, namely hot-gas spontaneous ignition and hot-residue piloted ignition. The latter is not the focus of this paper due to its extremely small probability of occurrence. The research reveals that the increase in flux intensity induces shorter delay times for both pyrolysis and ignition, lower ignition energy density, along with a corresponding rise in the critical mass flux and surface temperature at ignition moment. The simulation results are generally aligned with the experimental findings, despite some divergences may be attributed to model simplifications and parameter assumptions. The work contributes to a deeper insight into material behavior under extreme radiation, with valuable implications for fire safety and hazard assessment.</div></div>","PeriodicalId":58209,"journal":{"name":"Defence Technology(防务技术)","volume":"40 ","pages":"Pages 65-77"},"PeriodicalIF":5.0000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Spontaneous ignition of corrugated cardboard under dynamic high radiant flux\",\"authors\":\"\",\"doi\":\"10.1016/j.dt.2024.05.010\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Understanding the response of solid combustibles under high radiant fluxes is critical in predicting the thermal damage from extreme scenarios. Unlike the more moderate radiant fluxes in conventional hydrocarbon fires, extreme events such as strong explosion, concentrated sunlight and directed energy can generate dynamic radiant fluxes at the MW/m<sup>2</sup> level, creating a unique threat to materials. This study investigates the pyrolysis and spontaneous ignition behaviors of corrugated cardboard by using both experimental and numerical methods, under 10-cm dynamic high radiant fluxes ranging from 0.2 to 1.25 MW/m<sup>2</sup> for 10 s. The spontaneous ignition process at dynamic high radiant fluxes was recorded and quantified. Two ignition modes were found at the critical radiant flux of 0.4 MW/m<sup>2</sup>, namely hot-gas spontaneous ignition and hot-residue piloted ignition. The latter is not the focus of this paper due to its extremely small probability of occurrence. The research reveals that the increase in flux intensity induces shorter delay times for both pyrolysis and ignition, lower ignition energy density, along with a corresponding rise in the critical mass flux and surface temperature at ignition moment. The simulation results are generally aligned with the experimental findings, despite some divergences may be attributed to model simplifications and parameter assumptions. The work contributes to a deeper insight into material behavior under extreme radiation, with valuable implications for fire safety and hazard assessment.</div></div>\",\"PeriodicalId\":58209,\"journal\":{\"name\":\"Defence Technology(防务技术)\",\"volume\":\"40 \",\"pages\":\"Pages 65-77\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Defence Technology(防务技术)\",\"FirstCategoryId\":\"1087\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S221491472400117X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Defence Technology(防务技术)","FirstCategoryId":"1087","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S221491472400117X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
Spontaneous ignition of corrugated cardboard under dynamic high radiant flux
Understanding the response of solid combustibles under high radiant fluxes is critical in predicting the thermal damage from extreme scenarios. Unlike the more moderate radiant fluxes in conventional hydrocarbon fires, extreme events such as strong explosion, concentrated sunlight and directed energy can generate dynamic radiant fluxes at the MW/m2 level, creating a unique threat to materials. This study investigates the pyrolysis and spontaneous ignition behaviors of corrugated cardboard by using both experimental and numerical methods, under 10-cm dynamic high radiant fluxes ranging from 0.2 to 1.25 MW/m2 for 10 s. The spontaneous ignition process at dynamic high radiant fluxes was recorded and quantified. Two ignition modes were found at the critical radiant flux of 0.4 MW/m2, namely hot-gas spontaneous ignition and hot-residue piloted ignition. The latter is not the focus of this paper due to its extremely small probability of occurrence. The research reveals that the increase in flux intensity induces shorter delay times for both pyrolysis and ignition, lower ignition energy density, along with a corresponding rise in the critical mass flux and surface temperature at ignition moment. The simulation results are generally aligned with the experimental findings, despite some divergences may be attributed to model simplifications and parameter assumptions. The work contributes to a deeper insight into material behavior under extreme radiation, with valuable implications for fire safety and hazard assessment.
Defence Technology(防务技术)Mechanical Engineering, Control and Systems Engineering, Industrial and Manufacturing Engineering
CiteScore
8.70
自引率
0.00%
发文量
728
审稿时长
25 days
期刊介绍:
Defence Technology, a peer reviewed journal, is published monthly and aims to become the best international academic exchange platform for the research related to defence technology. It publishes original research papers having direct bearing on defence, with a balanced coverage on analytical, experimental, numerical simulation and applied investigations. It covers various disciplines of science, technology and engineering.