{"title":"采用混合运动算法进行无人飞行器路径规划以避开障碍物","authors":"Venkatasivarambabu Pamarthi, Richa Agrawal","doi":"10.1016/j.measen.2024.101195","DOIUrl":null,"url":null,"abstract":"<div><div>Unmanned aerial vehicles (UAVs) are gaining prominence in autonomously navigating diverse terrains, requiring the capability to establish collision-free trajectories and adapt them on-the-fly to changing environments. This study's central contribution lies in devising an optimized motion planning framework tailored for UAVs operating amidst dynamic scenarios. This framework comprises two integral components: an optimized motion planner and a dynamic scenario generator. To enhance trajectory optimization, the optimized motion planner enhances the Rapidly-exploring Random Tree (RRTX) method with a Covariant Hamiltonian Optimization for Motion Planning (CHOMP) algorithm-based optimizer. Addressing the challenges posed by dynamic environments characterized by abrupt appearance, disappearance, or shifting of constraints, the motion planner adeptly identifies environmental changes and computes collision-free paths during UAV navigation. The dynamic scenario generator integrates a UAV simulator and barrier information, effectively emulating UAV obstacles and intended flight patterns within a Unity-based simulation environment. The simulator employed is Flight Mare, a versatile quadrotor simulator that employs Unity's graphics engine and a physics engine for dynamic simulations. Through comprehensive simulations, the proposed approach is validated, demonstrating its efficacy in enabling UAVs to autonomously navigate dynamic environments while avoiding obstacles successfully.</div></div>","PeriodicalId":34311,"journal":{"name":"Measurement Sensors","volume":"36 ","pages":"Article 101195"},"PeriodicalIF":0.0000,"publicationDate":"2024-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unmanned aerial vehicle path planning with hybrid motion algorithm for obstacle avoidance\",\"authors\":\"Venkatasivarambabu Pamarthi, Richa Agrawal\",\"doi\":\"10.1016/j.measen.2024.101195\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Unmanned aerial vehicles (UAVs) are gaining prominence in autonomously navigating diverse terrains, requiring the capability to establish collision-free trajectories and adapt them on-the-fly to changing environments. This study's central contribution lies in devising an optimized motion planning framework tailored for UAVs operating amidst dynamic scenarios. This framework comprises two integral components: an optimized motion planner and a dynamic scenario generator. To enhance trajectory optimization, the optimized motion planner enhances the Rapidly-exploring Random Tree (RRTX) method with a Covariant Hamiltonian Optimization for Motion Planning (CHOMP) algorithm-based optimizer. Addressing the challenges posed by dynamic environments characterized by abrupt appearance, disappearance, or shifting of constraints, the motion planner adeptly identifies environmental changes and computes collision-free paths during UAV navigation. The dynamic scenario generator integrates a UAV simulator and barrier information, effectively emulating UAV obstacles and intended flight patterns within a Unity-based simulation environment. The simulator employed is Flight Mare, a versatile quadrotor simulator that employs Unity's graphics engine and a physics engine for dynamic simulations. Through comprehensive simulations, the proposed approach is validated, demonstrating its efficacy in enabling UAVs to autonomously navigate dynamic environments while avoiding obstacles successfully.</div></div>\",\"PeriodicalId\":34311,\"journal\":{\"name\":\"Measurement Sensors\",\"volume\":\"36 \",\"pages\":\"Article 101195\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Measurement Sensors\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2665917424001715\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Measurement Sensors","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2665917424001715","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
Unmanned aerial vehicle path planning with hybrid motion algorithm for obstacle avoidance
Unmanned aerial vehicles (UAVs) are gaining prominence in autonomously navigating diverse terrains, requiring the capability to establish collision-free trajectories and adapt them on-the-fly to changing environments. This study's central contribution lies in devising an optimized motion planning framework tailored for UAVs operating amidst dynamic scenarios. This framework comprises two integral components: an optimized motion planner and a dynamic scenario generator. To enhance trajectory optimization, the optimized motion planner enhances the Rapidly-exploring Random Tree (RRTX) method with a Covariant Hamiltonian Optimization for Motion Planning (CHOMP) algorithm-based optimizer. Addressing the challenges posed by dynamic environments characterized by abrupt appearance, disappearance, or shifting of constraints, the motion planner adeptly identifies environmental changes and computes collision-free paths during UAV navigation. The dynamic scenario generator integrates a UAV simulator and barrier information, effectively emulating UAV obstacles and intended flight patterns within a Unity-based simulation environment. The simulator employed is Flight Mare, a versatile quadrotor simulator that employs Unity's graphics engine and a physics engine for dynamic simulations. Through comprehensive simulations, the proposed approach is validated, demonstrating its efficacy in enabling UAVs to autonomously navigate dynamic environments while avoiding obstacles successfully.