Priyanka Chandra, R. K. Fagodiya, Arvind Kumar Rai, P. Sheoran, Kailash Prajapat, Ajay Singh, Kamlesh Verma, Vijendra Kumar Verma, Rajender Kumar Yadav, A. K. Biswas
{"title":"不同耕作和残留物管理方法对水稻-小麦种植系统中土壤生物活动和微生物可培养多样性的影响","authors":"Priyanka Chandra, R. K. Fagodiya, Arvind Kumar Rai, P. Sheoran, Kailash Prajapat, Ajay Singh, Kamlesh Verma, Vijendra Kumar Verma, Rajender Kumar Yadav, A. K. Biswas","doi":"10.12911/22998993/183555","DOIUrl":null,"url":null,"abstract":"Agricultural management practices alter soil characteristics and influence soil biological properties. Hence, a field trial was carried out to assess the 14-year long-term impact of tillage and residue management practices on soil biological activities and microbial population in a rice-wheat cropping system in two depths viz., 0–15 and 15–30 cm. Soil organic carbon levels differed significantly (p > 0.05) across various treatments. Microbial biomass car - bon, microbial quotient, and soil enzymatic activities were significantly greater (10–82%) in crop residue incorpo - ration/retention treatments. Zero tillage with residue retention (ZT+R) had the greatest bacterial, actinomycetes, and fungi population, followed by reduced tillage with residue incorporation (RT+R). The ZT+R treatment had the greatest value of K-strategist and r-strategist, and was equivalent to RT+R across both soil depths. When compared to conventional tillage (CT), zero tillage (ZT) increased wheat yield by 9%. However, compared to CT, rice and rice-wheat systems had lower grain yields, whereas crop residue increased wheat and rice-wheat system yields by 10% and 6%, respectively. The findings of this long-term study show that residue management and tillage practices can enhance soil biological attributes while also supporting microbial diversity.","PeriodicalId":15652,"journal":{"name":"Journal of Ecological Engineering","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Different Tillage and Residue Management Practices Affect Soil Biological Activities and Microbial Culturable Diversity in Rice-Wheat Cropping System Under Reclaimed Sodic Soils\",\"authors\":\"Priyanka Chandra, R. K. Fagodiya, Arvind Kumar Rai, P. Sheoran, Kailash Prajapat, Ajay Singh, Kamlesh Verma, Vijendra Kumar Verma, Rajender Kumar Yadav, A. K. Biswas\",\"doi\":\"10.12911/22998993/183555\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Agricultural management practices alter soil characteristics and influence soil biological properties. Hence, a field trial was carried out to assess the 14-year long-term impact of tillage and residue management practices on soil biological activities and microbial population in a rice-wheat cropping system in two depths viz., 0–15 and 15–30 cm. Soil organic carbon levels differed significantly (p > 0.05) across various treatments. Microbial biomass car - bon, microbial quotient, and soil enzymatic activities were significantly greater (10–82%) in crop residue incorpo - ration/retention treatments. Zero tillage with residue retention (ZT+R) had the greatest bacterial, actinomycetes, and fungi population, followed by reduced tillage with residue incorporation (RT+R). The ZT+R treatment had the greatest value of K-strategist and r-strategist, and was equivalent to RT+R across both soil depths. When compared to conventional tillage (CT), zero tillage (ZT) increased wheat yield by 9%. However, compared to CT, rice and rice-wheat systems had lower grain yields, whereas crop residue increased wheat and rice-wheat system yields by 10% and 6%, respectively. The findings of this long-term study show that residue management and tillage practices can enhance soil biological attributes while also supporting microbial diversity.\",\"PeriodicalId\":15652,\"journal\":{\"name\":\"Journal of Ecological Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Ecological Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.12911/22998993/183555\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, ENVIRONMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Ecological Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12911/22998993/183555","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
Different Tillage and Residue Management Practices Affect Soil Biological Activities and Microbial Culturable Diversity in Rice-Wheat Cropping System Under Reclaimed Sodic Soils
Agricultural management practices alter soil characteristics and influence soil biological properties. Hence, a field trial was carried out to assess the 14-year long-term impact of tillage and residue management practices on soil biological activities and microbial population in a rice-wheat cropping system in two depths viz., 0–15 and 15–30 cm. Soil organic carbon levels differed significantly (p > 0.05) across various treatments. Microbial biomass car - bon, microbial quotient, and soil enzymatic activities were significantly greater (10–82%) in crop residue incorpo - ration/retention treatments. Zero tillage with residue retention (ZT+R) had the greatest bacterial, actinomycetes, and fungi population, followed by reduced tillage with residue incorporation (RT+R). The ZT+R treatment had the greatest value of K-strategist and r-strategist, and was equivalent to RT+R across both soil depths. When compared to conventional tillage (CT), zero tillage (ZT) increased wheat yield by 9%. However, compared to CT, rice and rice-wheat systems had lower grain yields, whereas crop residue increased wheat and rice-wheat system yields by 10% and 6%, respectively. The findings of this long-term study show that residue management and tillage practices can enhance soil biological attributes while also supporting microbial diversity.
期刊介绍:
- Industrial and municipal waste management - Pro-ecological technologies and products - Energy-saving technologies - Environmental landscaping - Environmental monitoring - Climate change in the environment - Sustainable development - Processing and usage of mineral resources - Recovery of valuable materials and fuels - Surface water and groundwater management - Water and wastewater treatment - Smog and air pollution prevention - Protection and reclamation of soils - Reclamation and revitalization of degraded areas - Heavy metals in the environment - Renewable energy technologies - Environmental protection of rural areas - Restoration and protection of urban environment - Prevention of noise in the environment - Environmental life-cycle assessment (LCA) - Simulations and computer modeling for the environment