{"title":"低碳三维打印混凝土的最新发展:通过创新技术彻底改变建筑业","authors":"Mehran Khan, Ciaran McNally","doi":"10.1016/j.clema.2024.100251","DOIUrl":null,"url":null,"abstract":"<div><p>3D Printing Concrete (3DPC) represents an innovative advancement in construction, enabling the creation of intricate and custom structures while simultaneously reducing material waste and expediting construction schedules. This comprehensive review delves into the latest advancements in 3DPC technology and its capacity to reshape the building and construction sectors. The paper explores recent progress in 3DPC printing systems, methodologies, materials, and applications. It places particular emphasis on the diverse parameters and concrete mix proportions that wield substantial influence over the 3DPC process. Furthermore, this study delves into the utilization of waste materials as Supplementary Cementitious Materials, i.e., nano clay, nano-silica, and ground granulated blast-furnace slag, to enhance the properties of 3DPC. This discussion extends to the consideration of 3DPC as a low-carbon concrete, outlining both its advantages and the challenges associated with its practical implementation. Additionally, the paper presents case studies of large-scale 3DPC applications and structures, discussing their economic and environmental outcomes, particularly when incorporating waste materials into 3DPC applications. Through this comprehensive analysis, the paper highlights the potential of 3DPC to revolutionize construction practices and anticipates further advancements in this dynamic field.</p></div>","PeriodicalId":100254,"journal":{"name":"Cleaner Materials","volume":"12 ","pages":"Article 100251"},"PeriodicalIF":0.0000,"publicationDate":"2024-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772397624000352/pdfft?md5=7ea14f857621f61a4a439e57da1d31d9&pid=1-s2.0-S2772397624000352-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Recent developments on low carbon 3D printing concrete: Revolutionizing construction through innovative technology\",\"authors\":\"Mehran Khan, Ciaran McNally\",\"doi\":\"10.1016/j.clema.2024.100251\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>3D Printing Concrete (3DPC) represents an innovative advancement in construction, enabling the creation of intricate and custom structures while simultaneously reducing material waste and expediting construction schedules. This comprehensive review delves into the latest advancements in 3DPC technology and its capacity to reshape the building and construction sectors. The paper explores recent progress in 3DPC printing systems, methodologies, materials, and applications. It places particular emphasis on the diverse parameters and concrete mix proportions that wield substantial influence over the 3DPC process. Furthermore, this study delves into the utilization of waste materials as Supplementary Cementitious Materials, i.e., nano clay, nano-silica, and ground granulated blast-furnace slag, to enhance the properties of 3DPC. This discussion extends to the consideration of 3DPC as a low-carbon concrete, outlining both its advantages and the challenges associated with its practical implementation. Additionally, the paper presents case studies of large-scale 3DPC applications and structures, discussing their economic and environmental outcomes, particularly when incorporating waste materials into 3DPC applications. Through this comprehensive analysis, the paper highlights the potential of 3DPC to revolutionize construction practices and anticipates further advancements in this dynamic field.</p></div>\",\"PeriodicalId\":100254,\"journal\":{\"name\":\"Cleaner Materials\",\"volume\":\"12 \",\"pages\":\"Article 100251\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2772397624000352/pdfft?md5=7ea14f857621f61a4a439e57da1d31d9&pid=1-s2.0-S2772397624000352-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cleaner Materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2772397624000352\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cleaner Materials","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772397624000352","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Recent developments on low carbon 3D printing concrete: Revolutionizing construction through innovative technology
3D Printing Concrete (3DPC) represents an innovative advancement in construction, enabling the creation of intricate and custom structures while simultaneously reducing material waste and expediting construction schedules. This comprehensive review delves into the latest advancements in 3DPC technology and its capacity to reshape the building and construction sectors. The paper explores recent progress in 3DPC printing systems, methodologies, materials, and applications. It places particular emphasis on the diverse parameters and concrete mix proportions that wield substantial influence over the 3DPC process. Furthermore, this study delves into the utilization of waste materials as Supplementary Cementitious Materials, i.e., nano clay, nano-silica, and ground granulated blast-furnace slag, to enhance the properties of 3DPC. This discussion extends to the consideration of 3DPC as a low-carbon concrete, outlining both its advantages and the challenges associated with its practical implementation. Additionally, the paper presents case studies of large-scale 3DPC applications and structures, discussing their economic and environmental outcomes, particularly when incorporating waste materials into 3DPC applications. Through this comprehensive analysis, the paper highlights the potential of 3DPC to revolutionize construction practices and anticipates further advancements in this dynamic field.