{"title":"使用 HEA CoNiCrFeMn 粉末片材 (MAPS) 进行金属增材制造:聚合物含量对微观结构和机械性能的影响","authors":"","doi":"10.1016/j.cirp.2024.04.066","DOIUrl":null,"url":null,"abstract":"<div><p>Metal additive using Powder Sheets is an innovative technology driven on eliminating loose powder in laser based additive manufacturing. The utilisation of a novel composite polymer-powder material enables the complete encapsulation of powder to mitigate safety risks and production issues associated with loose powder. This research demonstrates the versatility of this technology through varying the composition of the novel composite material, to deliver stronger, harder and more ductile materials. It is demonstrated that high-entropy-alloys can be printed with better mechanical properties while not altering the solid solution. Future applications arise in the field of multi-materials and coatings.</p></div>","PeriodicalId":55256,"journal":{"name":"Cirp Annals-Manufacturing Technology","volume":"73 1","pages":"Pages 173-176"},"PeriodicalIF":3.2000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0007850624000805/pdfft?md5=20a950e7e43a8b5401de4bfde9946eb8&pid=1-s2.0-S0007850624000805-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Metal additive manufacturing using powder sheets (MAPS) of HEA CoNiCrFeMn: The effect of the polymer content on microstructure and mechanical properties\",\"authors\":\"\",\"doi\":\"10.1016/j.cirp.2024.04.066\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Metal additive using Powder Sheets is an innovative technology driven on eliminating loose powder in laser based additive manufacturing. The utilisation of a novel composite polymer-powder material enables the complete encapsulation of powder to mitigate safety risks and production issues associated with loose powder. This research demonstrates the versatility of this technology through varying the composition of the novel composite material, to deliver stronger, harder and more ductile materials. It is demonstrated that high-entropy-alloys can be printed with better mechanical properties while not altering the solid solution. Future applications arise in the field of multi-materials and coatings.</p></div>\",\"PeriodicalId\":55256,\"journal\":{\"name\":\"Cirp Annals-Manufacturing Technology\",\"volume\":\"73 1\",\"pages\":\"Pages 173-176\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0007850624000805/pdfft?md5=20a950e7e43a8b5401de4bfde9946eb8&pid=1-s2.0-S0007850624000805-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cirp Annals-Manufacturing Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0007850624000805\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, INDUSTRIAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cirp Annals-Manufacturing Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0007850624000805","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, INDUSTRIAL","Score":null,"Total":0}
Metal additive manufacturing using powder sheets (MAPS) of HEA CoNiCrFeMn: The effect of the polymer content on microstructure and mechanical properties
Metal additive using Powder Sheets is an innovative technology driven on eliminating loose powder in laser based additive manufacturing. The utilisation of a novel composite polymer-powder material enables the complete encapsulation of powder to mitigate safety risks and production issues associated with loose powder. This research demonstrates the versatility of this technology through varying the composition of the novel composite material, to deliver stronger, harder and more ductile materials. It is demonstrated that high-entropy-alloys can be printed with better mechanical properties while not altering the solid solution. Future applications arise in the field of multi-materials and coatings.
期刊介绍:
CIRP, The International Academy for Production Engineering, was founded in 1951 to promote, by scientific research, the development of all aspects of manufacturing technology covering the optimization, control and management of processes, machines and systems.
This biannual ISI cited journal contains approximately 140 refereed technical and keynote papers. Subject areas covered include:
Assembly, Cutting, Design, Electro-Physical and Chemical Processes, Forming, Abrasive processes, Surfaces, Machines, Production Systems and Organizations, Precision Engineering and Metrology, Life-Cycle Engineering, Microsystems Technology (MST), Nanotechnology.