Khalid Mujasam Batoo , Kadhim Hussein Jassim , Talal Aziz Qassem , Sajjad Hussain , Wafaa Talib Hasson , Sarah Salah Jalal , Montather F. Ramadan , Safaa Mustafa Hameed , Ahmed Hussien Alawadi , Ali Alsaalamy
{"title":"在可见光照射下高效降解四环素的新型磁分离 g-C3N4/TiO2/CuFe2O4 光催化剂:利用 RSM 优化工艺","authors":"Khalid Mujasam Batoo , Kadhim Hussein Jassim , Talal Aziz Qassem , Sajjad Hussain , Wafaa Talib Hasson , Sarah Salah Jalal , Montather F. Ramadan , Safaa Mustafa Hameed , Ahmed Hussien Alawadi , Ali Alsaalamy","doi":"10.1016/j.jscs.2024.101871","DOIUrl":null,"url":null,"abstract":"<div><p>Herein, a novel magnetic visible-driven g-C<sub>3</sub>N<sub>4</sub>/TiO<sub>2</sub>/CuFe<sub>2</sub>O<sub>4</sub> nanocomposite with excellent photocatalytic performance was successfully prepared and employed for photodegradation of tetracycline. Several analysis including X-Ray diffraction (XRD), Fourier Transform Infrared Spectroscopy (FTIR), Field Emission Scanning Electron Microscopy (FESEM), energy dispersive X-ray (EDX), Vibrating-Sample Magnetometer (VSM), and Ultraviolet–Visible Diffuse Reflectance Spectroscopy (UV–Vis DRS) were performed in order to study the structural, optical, magnetic, as well as morphological properties of nanocomposite. The optical band gap of g-C<sub>3</sub>N<sub>4</sub>/TiO<sub>2</sub>/CuFe<sub>2</sub>O<sub>4</sub> heterostructure was found to be red shifted to 2.45 eV from 3.15 eV for pure TiO<sub>2</sub>. Enhanced separation of photoinduced electron-hole pairs and enhanced visible light absorption capacity of nanocomposite lead to a maximum tetracycline photodegradation efficiency. Response surface methodology (RSM) was used to investigate the influence four independent variables, including initial photocatalyst dosage (7–14 g/L), TC concentration (20–30 ppm), solution pH (5.5–7.5), and irradiation time (20–40 min), and optimize the TC degradation efficiency. The g-C<sub>3</sub>N<sub>4</sub>/TiO<sub>2</sub>/CuFe<sub>2</sub>O<sub>4</sub> nanocomposite was able to separate and recycle easily using an external magnetic field, and the results of reusability was shown its high stability after 5 cycles. Active species trapping experiments suggested that holes and hydroxyl radicals played a crucial role in the TC degradation process. Finally, a potential photocatalytic mechanism for photodegradation of TC was proposed.</p></div>","PeriodicalId":16974,"journal":{"name":"Journal of Saudi Chemical Society","volume":"28 3","pages":"Article 101871"},"PeriodicalIF":5.8000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1319610324000668/pdfft?md5=3ef1bb78c0e5ef2bd29e764ed9c19543&pid=1-s2.0-S1319610324000668-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Novel magnetically separable g-C3N4/TiO2/CuFe2O4 photocatalyst for efficient degradation of tetracycline under visible light irradiation: Optimization of process by RSM\",\"authors\":\"Khalid Mujasam Batoo , Kadhim Hussein Jassim , Talal Aziz Qassem , Sajjad Hussain , Wafaa Talib Hasson , Sarah Salah Jalal , Montather F. Ramadan , Safaa Mustafa Hameed , Ahmed Hussien Alawadi , Ali Alsaalamy\",\"doi\":\"10.1016/j.jscs.2024.101871\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Herein, a novel magnetic visible-driven g-C<sub>3</sub>N<sub>4</sub>/TiO<sub>2</sub>/CuFe<sub>2</sub>O<sub>4</sub> nanocomposite with excellent photocatalytic performance was successfully prepared and employed for photodegradation of tetracycline. Several analysis including X-Ray diffraction (XRD), Fourier Transform Infrared Spectroscopy (FTIR), Field Emission Scanning Electron Microscopy (FESEM), energy dispersive X-ray (EDX), Vibrating-Sample Magnetometer (VSM), and Ultraviolet–Visible Diffuse Reflectance Spectroscopy (UV–Vis DRS) were performed in order to study the structural, optical, magnetic, as well as morphological properties of nanocomposite. The optical band gap of g-C<sub>3</sub>N<sub>4</sub>/TiO<sub>2</sub>/CuFe<sub>2</sub>O<sub>4</sub> heterostructure was found to be red shifted to 2.45 eV from 3.15 eV for pure TiO<sub>2</sub>. Enhanced separation of photoinduced electron-hole pairs and enhanced visible light absorption capacity of nanocomposite lead to a maximum tetracycline photodegradation efficiency. Response surface methodology (RSM) was used to investigate the influence four independent variables, including initial photocatalyst dosage (7–14 g/L), TC concentration (20–30 ppm), solution pH (5.5–7.5), and irradiation time (20–40 min), and optimize the TC degradation efficiency. The g-C<sub>3</sub>N<sub>4</sub>/TiO<sub>2</sub>/CuFe<sub>2</sub>O<sub>4</sub> nanocomposite was able to separate and recycle easily using an external magnetic field, and the results of reusability was shown its high stability after 5 cycles. Active species trapping experiments suggested that holes and hydroxyl radicals played a crucial role in the TC degradation process. Finally, a potential photocatalytic mechanism for photodegradation of TC was proposed.</p></div>\",\"PeriodicalId\":16974,\"journal\":{\"name\":\"Journal of Saudi Chemical Society\",\"volume\":\"28 3\",\"pages\":\"Article 101871\"},\"PeriodicalIF\":5.8000,\"publicationDate\":\"2024-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S1319610324000668/pdfft?md5=3ef1bb78c0e5ef2bd29e764ed9c19543&pid=1-s2.0-S1319610324000668-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Saudi Chemical Society\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1319610324000668\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Saudi Chemical Society","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1319610324000668","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Novel magnetically separable g-C3N4/TiO2/CuFe2O4 photocatalyst for efficient degradation of tetracycline under visible light irradiation: Optimization of process by RSM
Herein, a novel magnetic visible-driven g-C3N4/TiO2/CuFe2O4 nanocomposite with excellent photocatalytic performance was successfully prepared and employed for photodegradation of tetracycline. Several analysis including X-Ray diffraction (XRD), Fourier Transform Infrared Spectroscopy (FTIR), Field Emission Scanning Electron Microscopy (FESEM), energy dispersive X-ray (EDX), Vibrating-Sample Magnetometer (VSM), and Ultraviolet–Visible Diffuse Reflectance Spectroscopy (UV–Vis DRS) were performed in order to study the structural, optical, magnetic, as well as morphological properties of nanocomposite. The optical band gap of g-C3N4/TiO2/CuFe2O4 heterostructure was found to be red shifted to 2.45 eV from 3.15 eV for pure TiO2. Enhanced separation of photoinduced electron-hole pairs and enhanced visible light absorption capacity of nanocomposite lead to a maximum tetracycline photodegradation efficiency. Response surface methodology (RSM) was used to investigate the influence four independent variables, including initial photocatalyst dosage (7–14 g/L), TC concentration (20–30 ppm), solution pH (5.5–7.5), and irradiation time (20–40 min), and optimize the TC degradation efficiency. The g-C3N4/TiO2/CuFe2O4 nanocomposite was able to separate and recycle easily using an external magnetic field, and the results of reusability was shown its high stability after 5 cycles. Active species trapping experiments suggested that holes and hydroxyl radicals played a crucial role in the TC degradation process. Finally, a potential photocatalytic mechanism for photodegradation of TC was proposed.
期刊介绍:
Journal of Saudi Chemical Society is an English language, peer-reviewed scholarly publication in the area of chemistry. Journal of Saudi Chemical Society publishes original papers, reviews and short reports on, but not limited to:
•Inorganic chemistry
•Physical chemistry
•Organic chemistry
•Analytical chemistry
Journal of Saudi Chemical Society is the official publication of the Saudi Chemical Society and is published by King Saud University in collaboration with Elsevier and is edited by an international group of eminent researchers.