{"title":"通过人工智能工具检测巨核细胞结构","authors":"S. I. Jabbar, A. Aladi","doi":"10.29194/njes.26040337","DOIUrl":null,"url":null,"abstract":"Recent research has focused on analysing megakaryocyte images to extract the information needed to track the progression of nervous system diseases. Segmentation is a fundamental step in describing and analysing the core contents of megakaryocytes, including the cytoplasm and nucleus. In this study, 45 megakaryocyte images were obtained. A new segmentation image technique was proposed, called the updating fuzzy c-means technique, through the intelligent selection of the centres of each cluster to separate cell components. The first step of this technique (fuzzification) was based on a knowledge analysis of the local parameters (entropy, contrast and standard deviation) that had a substantial influence on the grey-level distribution between the cytoplasm and nucleus. The second important step was the construction of fuzzy rules in terms of the variation in these local parameters to control the intelligent pick-out or update the centroid of each cluster and obtain a successful separation of the cytoplasm and nucleus. The final step was defuzzification to obtain the output images. The results revealed the superiority of the proposed method over recent technique. The accuracy of the segmented nucleus was greater than 7.46%; in the case of the cytoplasm, the accuracy was higher at 18%. These results indicated that this technique may be applied on other biomedical images.","PeriodicalId":7470,"journal":{"name":"Al-Nahrain Journal for Engineering Sciences","volume":"12 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Detection of Megakaryocyte Cell Structure Through Artificial Intelligence Tools\",\"authors\":\"S. I. Jabbar, A. Aladi\",\"doi\":\"10.29194/njes.26040337\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recent research has focused on analysing megakaryocyte images to extract the information needed to track the progression of nervous system diseases. Segmentation is a fundamental step in describing and analysing the core contents of megakaryocytes, including the cytoplasm and nucleus. In this study, 45 megakaryocyte images were obtained. A new segmentation image technique was proposed, called the updating fuzzy c-means technique, through the intelligent selection of the centres of each cluster to separate cell components. The first step of this technique (fuzzification) was based on a knowledge analysis of the local parameters (entropy, contrast and standard deviation) that had a substantial influence on the grey-level distribution between the cytoplasm and nucleus. The second important step was the construction of fuzzy rules in terms of the variation in these local parameters to control the intelligent pick-out or update the centroid of each cluster and obtain a successful separation of the cytoplasm and nucleus. The final step was defuzzification to obtain the output images. The results revealed the superiority of the proposed method over recent technique. The accuracy of the segmented nucleus was greater than 7.46%; in the case of the cytoplasm, the accuracy was higher at 18%. These results indicated that this technique may be applied on other biomedical images.\",\"PeriodicalId\":7470,\"journal\":{\"name\":\"Al-Nahrain Journal for Engineering Sciences\",\"volume\":\"12 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Al-Nahrain Journal for Engineering Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.29194/njes.26040337\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Al-Nahrain Journal for Engineering Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.29194/njes.26040337","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Detection of Megakaryocyte Cell Structure Through Artificial Intelligence Tools
Recent research has focused on analysing megakaryocyte images to extract the information needed to track the progression of nervous system diseases. Segmentation is a fundamental step in describing and analysing the core contents of megakaryocytes, including the cytoplasm and nucleus. In this study, 45 megakaryocyte images were obtained. A new segmentation image technique was proposed, called the updating fuzzy c-means technique, through the intelligent selection of the centres of each cluster to separate cell components. The first step of this technique (fuzzification) was based on a knowledge analysis of the local parameters (entropy, contrast and standard deviation) that had a substantial influence on the grey-level distribution between the cytoplasm and nucleus. The second important step was the construction of fuzzy rules in terms of the variation in these local parameters to control the intelligent pick-out or update the centroid of each cluster and obtain a successful separation of the cytoplasm and nucleus. The final step was defuzzification to obtain the output images. The results revealed the superiority of the proposed method over recent technique. The accuracy of the segmented nucleus was greater than 7.46%; in the case of the cytoplasm, the accuracy was higher at 18%. These results indicated that this technique may be applied on other biomedical images.