从快速手动点注释中学习神经纤维缠结的精确分割

Sina Ghandian, Liane Albarghouthi, Kiana Nava, Shivam R. Rai Sharma, Lise Minaud, Laurel Beckett, Naomi Saito, Charles DeCarli, Robert A. Rissman, Andrew F. Teich, Lee-Way Jin, Brittany N. Dugger, Michael J. Keiser
{"title":"从快速手动点注释中学习神经纤维缠结的精确分割","authors":"Sina Ghandian, Liane Albarghouthi, Kiana Nava, Shivam R. Rai Sharma, Lise Minaud, Laurel Beckett, Naomi Saito, Charles DeCarli, Robert A. Rissman, Andrew F. Teich, Lee-Way Jin, Brittany N. Dugger, Michael J. Keiser","doi":"10.1101/2024.05.15.594372","DOIUrl":null,"url":null,"abstract":"Accumulation of abnormal tau protein into neurofibrillary tangles (NFTs) is a pathologic hallmark of Alzheimer disease. Accurate and efficient detection and quantification of NFTs in tissue samples aids in deeper phenotyping of Alzheimer disease and may reveal relationships with clinical, demographic, and genetic features. However, expert manual analysis can be time-consuming, subject to observer variability, and limited in handling the large amounts of data generated by modern imaging techniques. We present a scalable, open access, deep learning-based approach to quantify the NFT burden in digital whole slide images (WSIs) of post-mortem human brain tissue. We trained a UNet model on 45 annotated 2400 μm by 1200 μm regions of interest (ROIs) selected from 15 unique WSIs of temporal cortex from Alzheimer disease cases from three institutes (University of California (UC)-Davis, UC-San Diego, and Columbia University). We developed a method to generate detailed segmentation ground truth masks at the pixel level directly from simple point annotations. The model achieved a precision of 0.53, recall of 0.60, and F1 score of 0.53 on a held-out test set of 7 WSIs, providing researchers with an efficient and reliable tool for NFT burden quantification. We compared this to an object detection model on the same dataset, which achieved comparable but more coarse-grained performance. Both models correlated with expert semi-quantitative scores at the whole-slide level. Our approach provides an open deep learning pipeline for detailed and scalable NFT spatial distribution and morphology analysis across large cohorts, which is not feasible through manual assessment.","PeriodicalId":501471,"journal":{"name":"bioRxiv - Pathology","volume":"30 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Learning precise segmentation of neurofibrillary tangles from rapid manual point annotations\",\"authors\":\"Sina Ghandian, Liane Albarghouthi, Kiana Nava, Shivam R. Rai Sharma, Lise Minaud, Laurel Beckett, Naomi Saito, Charles DeCarli, Robert A. Rissman, Andrew F. Teich, Lee-Way Jin, Brittany N. Dugger, Michael J. Keiser\",\"doi\":\"10.1101/2024.05.15.594372\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Accumulation of abnormal tau protein into neurofibrillary tangles (NFTs) is a pathologic hallmark of Alzheimer disease. Accurate and efficient detection and quantification of NFTs in tissue samples aids in deeper phenotyping of Alzheimer disease and may reveal relationships with clinical, demographic, and genetic features. However, expert manual analysis can be time-consuming, subject to observer variability, and limited in handling the large amounts of data generated by modern imaging techniques. We present a scalable, open access, deep learning-based approach to quantify the NFT burden in digital whole slide images (WSIs) of post-mortem human brain tissue. We trained a UNet model on 45 annotated 2400 μm by 1200 μm regions of interest (ROIs) selected from 15 unique WSIs of temporal cortex from Alzheimer disease cases from three institutes (University of California (UC)-Davis, UC-San Diego, and Columbia University). We developed a method to generate detailed segmentation ground truth masks at the pixel level directly from simple point annotations. The model achieved a precision of 0.53, recall of 0.60, and F1 score of 0.53 on a held-out test set of 7 WSIs, providing researchers with an efficient and reliable tool for NFT burden quantification. We compared this to an object detection model on the same dataset, which achieved comparable but more coarse-grained performance. Both models correlated with expert semi-quantitative scores at the whole-slide level. Our approach provides an open deep learning pipeline for detailed and scalable NFT spatial distribution and morphology analysis across large cohorts, which is not feasible through manual assessment.\",\"PeriodicalId\":501471,\"journal\":{\"name\":\"bioRxiv - Pathology\",\"volume\":\"30 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"bioRxiv - Pathology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1101/2024.05.15.594372\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"bioRxiv - Pathology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2024.05.15.594372","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

异常 tau 蛋白聚集成神经纤维缠结(NFT)是阿尔茨海默病的病理特征。准确、高效地检测和量化组织样本中的 NFTs 有助于对阿尔茨海默病进行更深入的表型分析,并揭示其与临床、人口统计学和遗传学特征之间的关系。然而,专家的人工分析可能会耗费大量时间,受观察者变异性的影响,并且在处理现代成像技术产生的大量数据时受到限制。我们提出了一种可扩展、开放访问、基于深度学习的方法,用于量化死后人类脑组织数字全切片图像(WSI)中的NFT负担。我们从三个研究所(加州大学戴维斯分校、加州大学圣迭戈分校和哥伦比亚大学)的 15 个阿尔茨海默病病例的颞叶皮层 WSI 图像中挑选出 45 个注释为 2400 μm x 1200 μm 的感兴趣区(ROI),在这些感兴趣区上训练了一个 UNet 模型。我们开发了一种方法,可直接从简单的点注释生成像素级的详细分割基本真实掩码。该模型的精确度达到 0.53,召回率达到 0.60,在 7 个 WSI 的保留测试集上的 F1 得分为 0.53,为研究人员提供了一种高效可靠的 NFT 负担量化工具。我们将其与同一数据集上的物体检测模型进行了比较,后者的性能相当,但更粗粒度。这两个模型都与专家在整张幻灯片层面的半定量评分相关。我们的方法提供了一个开放的深度学习管道,可在大型队列中进行详细、可扩展的 NFT 空间分布和形态分析,这在人工评估中是不可行的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Learning precise segmentation of neurofibrillary tangles from rapid manual point annotations
Accumulation of abnormal tau protein into neurofibrillary tangles (NFTs) is a pathologic hallmark of Alzheimer disease. Accurate and efficient detection and quantification of NFTs in tissue samples aids in deeper phenotyping of Alzheimer disease and may reveal relationships with clinical, demographic, and genetic features. However, expert manual analysis can be time-consuming, subject to observer variability, and limited in handling the large amounts of data generated by modern imaging techniques. We present a scalable, open access, deep learning-based approach to quantify the NFT burden in digital whole slide images (WSIs) of post-mortem human brain tissue. We trained a UNet model on 45 annotated 2400 μm by 1200 μm regions of interest (ROIs) selected from 15 unique WSIs of temporal cortex from Alzheimer disease cases from three institutes (University of California (UC)-Davis, UC-San Diego, and Columbia University). We developed a method to generate detailed segmentation ground truth masks at the pixel level directly from simple point annotations. The model achieved a precision of 0.53, recall of 0.60, and F1 score of 0.53 on a held-out test set of 7 WSIs, providing researchers with an efficient and reliable tool for NFT burden quantification. We compared this to an object detection model on the same dataset, which achieved comparable but more coarse-grained performance. Both models correlated with expert semi-quantitative scores at the whole-slide level. Our approach provides an open deep learning pipeline for detailed and scalable NFT spatial distribution and morphology analysis across large cohorts, which is not feasible through manual assessment.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Identification of SPP1-positive macrophages by single-cell spatial analysis in human lung tissues with mycobacterial infection Endothelial miR-34a deletion guards against aneurysm development despite endothelial dysfunction Machine-learning convergent melanocytic morphology despite noisy archival slides Multifocal cutaneous neoplastic vascular proliferations in a rainbow boa (Epicrates cenchria) collection with boid inclusion body disease Growth Analysis of Trichomonas vaginalis in Different Culture Media: Leveraging Large Language Models (LLMs) to Predict and Optimize In Vitro Growth Conditions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1