利用现场测量的粒径分布和较大粒径颗粒的影响建立海盐气溶胶光学模型

IF 6.5 2区 地球科学 Q1 METEOROLOGY & ATMOSPHERIC SCIENCES Advances in Atmospheric Sciences Pub Date : 2024-05-18 DOI:10.1007/s00376-024-3351-3
Wushao Lin, Lei Bi
{"title":"利用现场测量的粒径分布和较大粒径颗粒的影响建立海盐气溶胶光学模型","authors":"Wushao Lin, Lei Bi","doi":"10.1007/s00376-024-3351-3","DOIUrl":null,"url":null,"abstract":"<p>Sea salt aerosols play a critical role in regulating the global climate through their interactions with solar radiation. The size distribution of these particles is crucial in determining their bulk optical properties. In this study, we analyzed in situ measured size distributions of sea salt aerosols from four field campaigns and used multi-mode lognormal size distributions to fit the data. We employed super-spheroids and coated super-spheroids to account for the particles’ non-spherictty, inhomogeneity, and hysteresis effect during the deliquescence and crystallization processes. To compute the single-scattering properties of sea salt aerosols, we used the state-of-the-art invariant imbedding T-matrix method, which allows us to obtain accurate optical properties for sea salt aerosols with a maximum volume-equivalent diameter of 12 µm at a wavelength of 532 nm. Our results demonstrated that the particle models developed in this study were successful in replicating both the measured depolarization and lidar ratios at various relative humidity (RH) levels. Importantly, we observed that large-size particles with diameters larger than 4 µm had a substantial impact on the optical properties of sea salt aerosols, which has not been accounted for in previous studies. Specifically, excluding particles with diameters larger than 4 µm led to underestimating the scattering and backscattering coefficients by 27%–38% and 43%–60%, respectively, for the ACE-Asia field campaign. Additionally, the depolarization ratios were underestimated by 0.15 within the 50%–70% RH range. These findings emphasize the necessity of considering large particle sizes for optical modeling of sea salt aerosols.</p>","PeriodicalId":7249,"journal":{"name":"Advances in Atmospheric Sciences","volume":"46 1","pages":""},"PeriodicalIF":6.5000,"publicationDate":"2024-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optical Modeling of Sea Salt Aerosols Using in situ Measured Size Distributions and the Impact of Larger Size Particles\",\"authors\":\"Wushao Lin, Lei Bi\",\"doi\":\"10.1007/s00376-024-3351-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Sea salt aerosols play a critical role in regulating the global climate through their interactions with solar radiation. The size distribution of these particles is crucial in determining their bulk optical properties. In this study, we analyzed in situ measured size distributions of sea salt aerosols from four field campaigns and used multi-mode lognormal size distributions to fit the data. We employed super-spheroids and coated super-spheroids to account for the particles’ non-spherictty, inhomogeneity, and hysteresis effect during the deliquescence and crystallization processes. To compute the single-scattering properties of sea salt aerosols, we used the state-of-the-art invariant imbedding T-matrix method, which allows us to obtain accurate optical properties for sea salt aerosols with a maximum volume-equivalent diameter of 12 µm at a wavelength of 532 nm. Our results demonstrated that the particle models developed in this study were successful in replicating both the measured depolarization and lidar ratios at various relative humidity (RH) levels. Importantly, we observed that large-size particles with diameters larger than 4 µm had a substantial impact on the optical properties of sea salt aerosols, which has not been accounted for in previous studies. Specifically, excluding particles with diameters larger than 4 µm led to underestimating the scattering and backscattering coefficients by 27%–38% and 43%–60%, respectively, for the ACE-Asia field campaign. Additionally, the depolarization ratios were underestimated by 0.15 within the 50%–70% RH range. These findings emphasize the necessity of considering large particle sizes for optical modeling of sea salt aerosols.</p>\",\"PeriodicalId\":7249,\"journal\":{\"name\":\"Advances in Atmospheric Sciences\",\"volume\":\"46 1\",\"pages\":\"\"},\"PeriodicalIF\":6.5000,\"publicationDate\":\"2024-05-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Atmospheric Sciences\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1007/s00376-024-3351-3\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"METEOROLOGY & ATMOSPHERIC SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Atmospheric Sciences","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1007/s00376-024-3351-3","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

海盐气溶胶通过与太阳辐射的相互作用,在调节全球气候方面发挥着至关重要的作用。这些颗粒的粒度分布对确定其整体光学特性至关重要。在这项研究中,我们分析了四次野外活动中现场测量的海盐气溶胶粒度分布,并使用多模式对数正态粒度分布来拟合数据。我们采用了超球体和涂层超球体,以考虑颗粒在潮解和结晶过程中的非球形性、不均匀性和滞后效应。为了计算海盐气溶胶的单散射特性,我们使用了最先进的不变嵌入 T 矩阵方法,该方法使我们能够获得最大体积当量直径为 12 µm 的海盐气溶胶在 532 nm 波长下的精确光学特性。我们的研究结果表明,在不同相对湿度(RH)水平下,本研究开发的粒子模型成功地复制了测量到的去极化和激光雷达比率。重要的是,我们观察到直径大于 4 µm 的大尺寸颗粒对海盐气溶胶的光学特性有很大影响,而这一点在以前的研究中没有考虑到。具体来说,排除直径大于 4 µm 的颗粒会导致 ACE-Asia 实地研究中的散射系数和后向散射系数分别低估 27%-38% 和 43%-60%。此外,在 50%-70% 相对湿度范围内,去极化比被低估了 0.15。这些发现强调了在海盐气溶胶光学建模中考虑大颗粒尺寸的必要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Optical Modeling of Sea Salt Aerosols Using in situ Measured Size Distributions and the Impact of Larger Size Particles

Sea salt aerosols play a critical role in regulating the global climate through their interactions with solar radiation. The size distribution of these particles is crucial in determining their bulk optical properties. In this study, we analyzed in situ measured size distributions of sea salt aerosols from four field campaigns and used multi-mode lognormal size distributions to fit the data. We employed super-spheroids and coated super-spheroids to account for the particles’ non-spherictty, inhomogeneity, and hysteresis effect during the deliquescence and crystallization processes. To compute the single-scattering properties of sea salt aerosols, we used the state-of-the-art invariant imbedding T-matrix method, which allows us to obtain accurate optical properties for sea salt aerosols with a maximum volume-equivalent diameter of 12 µm at a wavelength of 532 nm. Our results demonstrated that the particle models developed in this study were successful in replicating both the measured depolarization and lidar ratios at various relative humidity (RH) levels. Importantly, we observed that large-size particles with diameters larger than 4 µm had a substantial impact on the optical properties of sea salt aerosols, which has not been accounted for in previous studies. Specifically, excluding particles with diameters larger than 4 µm led to underestimating the scattering and backscattering coefficients by 27%–38% and 43%–60%, respectively, for the ACE-Asia field campaign. Additionally, the depolarization ratios were underestimated by 0.15 within the 50%–70% RH range. These findings emphasize the necessity of considering large particle sizes for optical modeling of sea salt aerosols.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advances in Atmospheric Sciences
Advances in Atmospheric Sciences 地学-气象与大气科学
CiteScore
9.30
自引率
5.20%
发文量
154
审稿时长
6 months
期刊介绍: Advances in Atmospheric Sciences, launched in 1984, aims to rapidly publish original scientific papers on the dynamics, physics and chemistry of the atmosphere and ocean. It covers the latest achievements and developments in the atmospheric sciences, including marine meteorology and meteorology-associated geophysics, as well as the theoretical and practical aspects of these disciplines. Papers on weather systems, numerical weather prediction, climate dynamics and variability, satellite meteorology, remote sensing, air chemistry and the boundary layer, clouds and weather modification, can be found in the journal. Papers describing the application of new mathematics or new instruments are also collected here.
期刊最新文献
Spatiotemporal Evaluation and Future Projection of Diurnal Temperature Range over the Tibetan Plateau in CMIP6 Models Enhanced Cooling Efficiency of Urban Trees on Hotter Summer Days in 70 Cities of China On the Optimal Initial Inner-Core Size for Tropical Cyclone Intensification: An Idealized Numerical Study Improving Satellite-Retrieved Cloud Base Height with Ground-Based Cloud Radar Measurements Effectiveness of Precursor Emission Reductions for the Control of Summertime Ozone and PM2.5 in the Beijing–Tianjin–Hebei Region under Different Meteorological Conditions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1