{"title":"基于时间和空间增量的二维空间线性抛物线 SPDE 参数估计","authors":"Yozo Tonaki, Yusuke Kaino, Masayuki Uchida","doi":"10.1007/s00184-024-00969-x","DOIUrl":null,"url":null,"abstract":"<p>We deal with parameter estimation for linear parabolic second-order stochastic partial differential equations in two space dimensions driven by two types of <i>Q</i>-Wiener processes based on high frequency data with respect to time and space. We propose minimum contrast estimators of the coefficient parameters based on temporal and spatial increments, and provide adaptive estimators of the coefficient parameters based on approximate coordinate processes. We also give an example and simulation results of the proposed estimators.</p>","PeriodicalId":49821,"journal":{"name":"Metrika","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2024-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Parametric estimation for linear parabolic SPDEs in two space dimensions based on temporal and spatial increments\",\"authors\":\"Yozo Tonaki, Yusuke Kaino, Masayuki Uchida\",\"doi\":\"10.1007/s00184-024-00969-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We deal with parameter estimation for linear parabolic second-order stochastic partial differential equations in two space dimensions driven by two types of <i>Q</i>-Wiener processes based on high frequency data with respect to time and space. We propose minimum contrast estimators of the coefficient parameters based on temporal and spatial increments, and provide adaptive estimators of the coefficient parameters based on approximate coordinate processes. We also give an example and simulation results of the proposed estimators.</p>\",\"PeriodicalId\":49821,\"journal\":{\"name\":\"Metrika\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-05-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Metrika\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00184-024-00969-x\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metrika","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00184-024-00969-x","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
Parametric estimation for linear parabolic SPDEs in two space dimensions based on temporal and spatial increments
We deal with parameter estimation for linear parabolic second-order stochastic partial differential equations in two space dimensions driven by two types of Q-Wiener processes based on high frequency data with respect to time and space. We propose minimum contrast estimators of the coefficient parameters based on temporal and spatial increments, and provide adaptive estimators of the coefficient parameters based on approximate coordinate processes. We also give an example and simulation results of the proposed estimators.
期刊介绍:
Metrika is an international journal for theoretical and applied statistics. Metrika publishes original research papers in the field of mathematical statistics and statistical methods. Great importance is attached to new developments in theoretical statistics, statistical modeling and to actual innovative applicability of the proposed statistical methods and results. Topics of interest include, without being limited to, multivariate analysis, high dimensional statistics and nonparametric statistics; categorical data analysis and latent variable models; reliability, lifetime data analysis and statistics in engineering sciences.