CBA:用于快速智能识别目标意图的多源融合模型

IF 1.9 3区 计算机科学 Q3 AUTOMATION & CONTROL SYSTEMS Journal of Systems Engineering and Electronics Pub Date : 2024-05-14 DOI:10.23919/jsee.2024.000023
Shichang Wan, Qingshan Li, Xuhua Wang, Nanhua Lu
{"title":"CBA:用于快速智能识别目标意图的多源融合模型","authors":"Shichang Wan, Qingshan Li, Xuhua Wang, Nanhua Lu","doi":"10.23919/jsee.2024.000023","DOIUrl":null,"url":null,"abstract":"How to mine valuable information from massive multi-source heterogeneous data and identify the intention of aerial targets is a major research focus at present. Aiming at the long-term dependence of air target intention recognition, this paper deeply explores the potential attribute features from the spatiotemporal sequence data of the target. First, we build an intelligent dynamic intention recognition framework, including a series of specific processes such as data source, data preprocessing, target space-time, convolutional neural networks-bidirectional gated recurrent unit-atteneion (CBA) model and intention recognition. Then, we analyze and reason the designed CBA model in detail. Finally, through comparison and analysis with other recognition model experiments, our proposed method can effectively improve the accuracy of air target intention recognition, and is of significance to the commanders' operational command and situation prediction.","PeriodicalId":50030,"journal":{"name":"Journal of Systems Engineering and Electronics","volume":"34 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2024-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"CBA: Multi Source Fusion Model for Fast and Intelligent Target Intention Identification\",\"authors\":\"Shichang Wan, Qingshan Li, Xuhua Wang, Nanhua Lu\",\"doi\":\"10.23919/jsee.2024.000023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"How to mine valuable information from massive multi-source heterogeneous data and identify the intention of aerial targets is a major research focus at present. Aiming at the long-term dependence of air target intention recognition, this paper deeply explores the potential attribute features from the spatiotemporal sequence data of the target. First, we build an intelligent dynamic intention recognition framework, including a series of specific processes such as data source, data preprocessing, target space-time, convolutional neural networks-bidirectional gated recurrent unit-atteneion (CBA) model and intention recognition. Then, we analyze and reason the designed CBA model in detail. Finally, through comparison and analysis with other recognition model experiments, our proposed method can effectively improve the accuracy of air target intention recognition, and is of significance to the commanders' operational command and situation prediction.\",\"PeriodicalId\":50030,\"journal\":{\"name\":\"Journal of Systems Engineering and Electronics\",\"volume\":\"34 1\",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-05-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Systems Engineering and Electronics\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.23919/jsee.2024.000023\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Systems Engineering and Electronics","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.23919/jsee.2024.000023","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

如何从海量多源异构数据中挖掘有价值的信息,识别空中目标的意图是当前研究的重点。针对空中目标意图识别的长期依赖性,本文深入挖掘了目标时空序列数据中潜在的属性特征。首先,我们构建了一个智能动态意图识别框架,包括数据源、数据预处理、目标时空、卷积神经网络-双向门控递归单元-注意力(CBA)模型和意图识别等一系列具体流程。然后,我们对所设计的 CBA 模型进行了详细分析和推理。最后,通过与其他识别模型实验的对比分析,我们提出的方法能有效提高空中目标意图识别的准确性,对指挥员的作战指挥和态势预测具有重要意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
CBA: Multi Source Fusion Model for Fast and Intelligent Target Intention Identification
How to mine valuable information from massive multi-source heterogeneous data and identify the intention of aerial targets is a major research focus at present. Aiming at the long-term dependence of air target intention recognition, this paper deeply explores the potential attribute features from the spatiotemporal sequence data of the target. First, we build an intelligent dynamic intention recognition framework, including a series of specific processes such as data source, data preprocessing, target space-time, convolutional neural networks-bidirectional gated recurrent unit-atteneion (CBA) model and intention recognition. Then, we analyze and reason the designed CBA model in detail. Finally, through comparison and analysis with other recognition model experiments, our proposed method can effectively improve the accuracy of air target intention recognition, and is of significance to the commanders' operational command and situation prediction.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Systems Engineering and Electronics
Journal of Systems Engineering and Electronics 工程技术-工程:电子与电气
CiteScore
4.10
自引率
14.30%
发文量
131
审稿时长
7.5 months
期刊介绍: Information not localized
期刊最新文献
System Error Iterative Identification for Underwater Positioning Based on Spectral Clustering Cloud Control for IIoT in a Cloud-Edge Environment Multi-Network-Region Traffic Cooperative Scheduling in Large-Scale LEO Satellite Networks Quantitative Method for Calculating Spatial Release Region for Laser-Guided Bomb Early Warning of Core Network Capacity in Space-Terrestrial Integrated Networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1