自适应系统的生物标志物选择

Joshua Pickard, Cooper Stansbury, Amit Surana, Anthony Bloch, Indika Rajapakse
{"title":"自适应系统的生物标志物选择","authors":"Joshua Pickard, Cooper Stansbury, Amit Surana, Anthony Bloch, Indika Rajapakse","doi":"arxiv-2405.09809","DOIUrl":null,"url":null,"abstract":"Biomarker selection and real-time monitoring of cell dynamics remains an\nactive challenge in cell biology and biomanufacturing. Here, we develop\nscalable adaptations of classic approaches to sensor selection for biomarker\nidentification on several transcriptomics and biological datasets that are\notherwise cannot be studied from a controls perspective. To address challenges\nin system identification of biological systems and provide robust biomarkers,\nwe propose Dynamic and Structure Guided Sensors Selection (DSS and SGSS),\nmethods by which temporal models and structural experimental data can be used\nto supplement traditional approaches to sensor selection. These approaches\nleverage temporal models and experimental data to enhance traditional sensor\nselection techniques. Unlike conventional methods that assume well-known, fixed\ndynamics, DSS and SGSS adaptively select sensors that maximize observability\nwhile accounting for the time-varying nature of biological systems.\nAdditionally, they incorporate structural information to identify robust\nsensors even in cases where system dynamics are poorly understood. We validate\nthese two approaches by performing estimation on several high dimensional\nsystems derived from temporal gene expression data from partial observations.","PeriodicalId":501325,"journal":{"name":"arXiv - QuanBio - Molecular Networks","volume":"23 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Biomarker Selection for Adaptive Systems\",\"authors\":\"Joshua Pickard, Cooper Stansbury, Amit Surana, Anthony Bloch, Indika Rajapakse\",\"doi\":\"arxiv-2405.09809\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Biomarker selection and real-time monitoring of cell dynamics remains an\\nactive challenge in cell biology and biomanufacturing. Here, we develop\\nscalable adaptations of classic approaches to sensor selection for biomarker\\nidentification on several transcriptomics and biological datasets that are\\notherwise cannot be studied from a controls perspective. To address challenges\\nin system identification of biological systems and provide robust biomarkers,\\nwe propose Dynamic and Structure Guided Sensors Selection (DSS and SGSS),\\nmethods by which temporal models and structural experimental data can be used\\nto supplement traditional approaches to sensor selection. These approaches\\nleverage temporal models and experimental data to enhance traditional sensor\\nselection techniques. Unlike conventional methods that assume well-known, fixed\\ndynamics, DSS and SGSS adaptively select sensors that maximize observability\\nwhile accounting for the time-varying nature of biological systems.\\nAdditionally, they incorporate structural information to identify robust\\nsensors even in cases where system dynamics are poorly understood. We validate\\nthese two approaches by performing estimation on several high dimensional\\nsystems derived from temporal gene expression data from partial observations.\",\"PeriodicalId\":501325,\"journal\":{\"name\":\"arXiv - QuanBio - Molecular Networks\",\"volume\":\"23 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - QuanBio - Molecular Networks\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2405.09809\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuanBio - Molecular Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2405.09809","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

生物标记物的选择和细胞动态的实时监测仍然是细胞生物学和生物制造领域的一项挑战。在这里,我们对传感器选择的经典方法进行了可扩展的调整,以便在多个转录组学和生物数据集上进行生物标记物鉴定,否则这些数据集无法从控制的角度进行研究。为了应对生物系统鉴定中的挑战并提供稳健的生物标记物,我们提出了动态和结构引导传感器选择(DSS 和 SGSS)方法,通过这些方法,可以使用时间模型和结构实验数据来补充传统的传感器选择方法。这些方法利用时间模型和实验数据来增强传统的传感器选择技术。与假定众所周知的固定动力学的传统方法不同,DSS 和 SGSS 能够自适应地选择传感器,从而最大限度地提高可观测性,同时考虑到生物系统的时变特性。我们通过对来自部分观测的时间基因表达数据的几个高维系统进行估计,验证了这两种方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Biomarker Selection for Adaptive Systems
Biomarker selection and real-time monitoring of cell dynamics remains an active challenge in cell biology and biomanufacturing. Here, we develop scalable adaptations of classic approaches to sensor selection for biomarker identification on several transcriptomics and biological datasets that are otherwise cannot be studied from a controls perspective. To address challenges in system identification of biological systems and provide robust biomarkers, we propose Dynamic and Structure Guided Sensors Selection (DSS and SGSS), methods by which temporal models and structural experimental data can be used to supplement traditional approaches to sensor selection. These approaches leverage temporal models and experimental data to enhance traditional sensor selection techniques. Unlike conventional methods that assume well-known, fixed dynamics, DSS and SGSS adaptively select sensors that maximize observability while accounting for the time-varying nature of biological systems. Additionally, they incorporate structural information to identify robust sensors even in cases where system dynamics are poorly understood. We validate these two approaches by performing estimation on several high dimensional systems derived from temporal gene expression data from partial observations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Multi-variable control to mitigate loads in CRISPRa networks Some bounds on positive equilibria in mass action networks Non-explosivity of endotactic stochastic reaction systems Limits on the computational expressivity of non-equilibrium biophysical processes When lowering temperature, the in vivo circadian clock in cyanobacteria follows and surpasses the in vitro protein clock trough the Hopf bifurcation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1