{"title":"基于 CNN-LSTM 的蜂群目标轨迹相关算法","authors":"Jinyang Chen, Xuhua Wang, Xian Chen","doi":"10.23919/jsee.2024.000033","DOIUrl":null,"url":null,"abstract":"The rapid development of unmanned aerial vehicle (UAV) swarm, a new type of aerial threat target, has brought great pressure to the air defense early warning system. At present, most of the track correlation algorithms only use part of the target location, speed, and other information for correlation. In this paper, the artificial neural network method is used to establish the corresponding intelligent track correlation model and method according to the characteristics of swarm targets. Precisely, a route correlation method based on convolutional neural networks (CNN) and long short-term memory (LSTM) Neural network is designed. In this model, the CNN is used to extract the formation characteristics of UAV swarm and the spatial position characteristics of single UAV track in the formation, while the LSTM is used to extract the time characteristics of UAV swarm. Experimental results show that compared with the traditional algorithms, the algorithm based on CNN-LSTM neural network can make full use of multiple feature information of the target, and has better robustness and accuracy for swarm targets.","PeriodicalId":50030,"journal":{"name":"Journal of Systems Engineering and Electronics","volume":"14 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2024-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Track Correlation Algorithm Based on CNN-LSTM for Swarm Targets\",\"authors\":\"Jinyang Chen, Xuhua Wang, Xian Chen\",\"doi\":\"10.23919/jsee.2024.000033\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The rapid development of unmanned aerial vehicle (UAV) swarm, a new type of aerial threat target, has brought great pressure to the air defense early warning system. At present, most of the track correlation algorithms only use part of the target location, speed, and other information for correlation. In this paper, the artificial neural network method is used to establish the corresponding intelligent track correlation model and method according to the characteristics of swarm targets. Precisely, a route correlation method based on convolutional neural networks (CNN) and long short-term memory (LSTM) Neural network is designed. In this model, the CNN is used to extract the formation characteristics of UAV swarm and the spatial position characteristics of single UAV track in the formation, while the LSTM is used to extract the time characteristics of UAV swarm. Experimental results show that compared with the traditional algorithms, the algorithm based on CNN-LSTM neural network can make full use of multiple feature information of the target, and has better robustness and accuracy for swarm targets.\",\"PeriodicalId\":50030,\"journal\":{\"name\":\"Journal of Systems Engineering and Electronics\",\"volume\":\"14 1\",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-05-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Systems Engineering and Electronics\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.23919/jsee.2024.000033\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Systems Engineering and Electronics","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.23919/jsee.2024.000033","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
Track Correlation Algorithm Based on CNN-LSTM for Swarm Targets
The rapid development of unmanned aerial vehicle (UAV) swarm, a new type of aerial threat target, has brought great pressure to the air defense early warning system. At present, most of the track correlation algorithms only use part of the target location, speed, and other information for correlation. In this paper, the artificial neural network method is used to establish the corresponding intelligent track correlation model and method according to the characteristics of swarm targets. Precisely, a route correlation method based on convolutional neural networks (CNN) and long short-term memory (LSTM) Neural network is designed. In this model, the CNN is used to extract the formation characteristics of UAV swarm and the spatial position characteristics of single UAV track in the formation, while the LSTM is used to extract the time characteristics of UAV swarm. Experimental results show that compared with the traditional algorithms, the algorithm based on CNN-LSTM neural network can make full use of multiple feature information of the target, and has better robustness and accuracy for swarm targets.