非共振手性双光子驱动诱导的动态可切换量子非互斥性

IF 6.4 1区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY Science China Physics, Mechanics & Astronomy Pub Date : 2024-05-14 DOI:10.1007/s11433-023-2348-x
Da-Wei Liu, Zi-Hao Li, Shi-Lei Chao, Ying Wu, Liu-Gang Si
{"title":"非共振手性双光子驱动诱导的动态可切换量子非互斥性","authors":"Da-Wei Liu, Zi-Hao Li, Shi-Lei Chao, Ying Wu, Liu-Gang Si","doi":"10.1007/s11433-023-2348-x","DOIUrl":null,"url":null,"abstract":"<p>Optical nonreciprocity, which refers to the direction-dependent emission, scattering and absorption of photons, plays a very important role in quantum engineering and quantum information processing. Here, we propose an all-optical approach to achieve the optical dynamical switchable quantum nonreciprocity by an off-resonant chiral two-photon driving in a single microring cavity, which differs from the conventional nonreciprocal schemes. It is shown that the optical field with time-dependent statistical properties can be generated and the nonreciprocity flips periodically, with switchable photon blockade and photon-induced tunneling effects. We find that the dynamical system is robust and immune to the parameter variations, which loosens the parameter range of system. Meanwhile, the time window for one-way quantum information is sufficiently wide and tunable. Our work opens a new idea for the current quantum nonreciprocal research, which can facilitate a memory functionality and be used for future in-memory superconducting quantum compute. The other nonreciprocal quantum devices, i.e., dynamical switchable nonreciprocal squeezing and entanglement, may be inspired by our method, which is expected to have important applications in future quantum technology.</p>","PeriodicalId":774,"journal":{"name":"Science China Physics, Mechanics & Astronomy","volume":null,"pages":null},"PeriodicalIF":6.4000,"publicationDate":"2024-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dynamical switchable quantum nonreciprocity induced by off-resonant chiral two-photon driving\",\"authors\":\"Da-Wei Liu, Zi-Hao Li, Shi-Lei Chao, Ying Wu, Liu-Gang Si\",\"doi\":\"10.1007/s11433-023-2348-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Optical nonreciprocity, which refers to the direction-dependent emission, scattering and absorption of photons, plays a very important role in quantum engineering and quantum information processing. Here, we propose an all-optical approach to achieve the optical dynamical switchable quantum nonreciprocity by an off-resonant chiral two-photon driving in a single microring cavity, which differs from the conventional nonreciprocal schemes. It is shown that the optical field with time-dependent statistical properties can be generated and the nonreciprocity flips periodically, with switchable photon blockade and photon-induced tunneling effects. We find that the dynamical system is robust and immune to the parameter variations, which loosens the parameter range of system. Meanwhile, the time window for one-way quantum information is sufficiently wide and tunable. Our work opens a new idea for the current quantum nonreciprocal research, which can facilitate a memory functionality and be used for future in-memory superconducting quantum compute. The other nonreciprocal quantum devices, i.e., dynamical switchable nonreciprocal squeezing and entanglement, may be inspired by our method, which is expected to have important applications in future quantum technology.</p>\",\"PeriodicalId\":774,\"journal\":{\"name\":\"Science China Physics, Mechanics & Astronomy\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":6.4000,\"publicationDate\":\"2024-05-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science China Physics, Mechanics & Astronomy\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1007/s11433-023-2348-x\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science China Physics, Mechanics & Astronomy","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1007/s11433-023-2348-x","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

光学非互斥性是指光子的发射、散射和吸收与方向有关,在量子工程和量子信息处理中发挥着非常重要的作用。在这里,我们提出了一种不同于传统非互易方案的全光学方法,即在单个微孔腔中通过非共振手性双光子驱动实现光学动态可切换量子非互易。研究表明,可以产生具有随时间变化的统计特性的光场,并且非互易性可以周期性地翻转,同时具有可切换的光子阻挡和光子诱导隧道效应。我们发现,该动力学系统对参数变化具有鲁棒性和免疫性,从而放宽了系统的参数范围。同时,单向量子信息的时间窗口足够宽且可调。我们的工作为当前的量子非互易研究开辟了一个新思路,它可以促进记忆功能的实现,并可用于未来的内存超导量子计算。其他非互惠量子器件,即动态可切换的非互惠挤压和纠缠,也可能受到我们方法的启发,有望在未来量子技术中得到重要应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Dynamical switchable quantum nonreciprocity induced by off-resonant chiral two-photon driving

Optical nonreciprocity, which refers to the direction-dependent emission, scattering and absorption of photons, plays a very important role in quantum engineering and quantum information processing. Here, we propose an all-optical approach to achieve the optical dynamical switchable quantum nonreciprocity by an off-resonant chiral two-photon driving in a single microring cavity, which differs from the conventional nonreciprocal schemes. It is shown that the optical field with time-dependent statistical properties can be generated and the nonreciprocity flips periodically, with switchable photon blockade and photon-induced tunneling effects. We find that the dynamical system is robust and immune to the parameter variations, which loosens the parameter range of system. Meanwhile, the time window for one-way quantum information is sufficiently wide and tunable. Our work opens a new idea for the current quantum nonreciprocal research, which can facilitate a memory functionality and be used for future in-memory superconducting quantum compute. The other nonreciprocal quantum devices, i.e., dynamical switchable nonreciprocal squeezing and entanglement, may be inspired by our method, which is expected to have important applications in future quantum technology.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Science China Physics, Mechanics & Astronomy
Science China Physics, Mechanics & Astronomy PHYSICS, MULTIDISCIPLINARY-
CiteScore
10.30
自引率
6.20%
发文量
4047
审稿时长
3 months
期刊介绍: Science China Physics, Mechanics & Astronomy, an academic journal cosponsored by the Chinese Academy of Sciences and the National Natural Science Foundation of China, and published by Science China Press, is committed to publishing high-quality, original results in both basic and applied research. Science China Physics, Mechanics & Astronomy, is published in both print and electronic forms. It is indexed by Science Citation Index. Categories of articles: Reviews summarize representative results and achievements in a particular topic or an area, comment on the current state of research, and advise on the research directions. The author’s own opinion and related discussion is requested. Research papers report on important original results in all areas of physics, mechanics and astronomy. Brief reports present short reports in a timely manner of the latest important results.
期刊最新文献
Embedded Majorana islands Lorentz violation induces isospectrality breaking in Einstein-bumblebee gravity theory Frustrated superconductivity and sextetting order Physical neural networks with self-learning capabilities Anomalous negative magnetoresistance in quantum dot Josephson junctions with Kondo correlations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1