Konrad Małek, Jacek Dybała, Andrzej Kordecki, Piotr Hondra, Katarzyna Kijania
{"title":"利用基于合成数据的权重初始化进行语义分割的 OffRoadSynth 开放数据集,适用于非公路环境中的自主式 UGV","authors":"Konrad Małek, Jacek Dybała, Andrzej Kordecki, Piotr Hondra, Katarzyna Kijania","doi":"10.1007/s10846-024-02114-2","DOIUrl":null,"url":null,"abstract":"<p>This article concerns the issue of image semantic segmentation for the machine vision system of an autonomous Unmanned Ground Vehicle (UGV) moving in an off-road environment. Determining the meaning (semantics) of the areas visible in the recorded image provides a complete understanding of the scene surrounding the autonomous vehicle. It is crucial for the correct determination of a passable route. Nowadays, semantic segmentation is generally solved using convolutional neural networks (CNN), which can take an image as input and output the segmented image. However, proper training of the neural network requires the use of large amounts of data, which becomes problematic in the situation of low availability of large, dedicated image data sets that consider various off-road situations - driving on various types of roads, surrounded by diverse vegetation and in various weather and light conditions. This study introduces a synthetic image dataset called “OffRoadSynth” to address the training data scarcity for off-road scenarios. It has been shown that pre-training the neural network on this synthetic dataset improves image segmentation accuracy compared to other methods, such as random network weight initialization or using larger, generic datasets. Results suggest that using a smaller but domain-dedicated set of synthetic images to initialize network weights for training on the target real-world dataset may be an effective approach to improving semantic segmentation results of images, including those from off-road environments.</p>","PeriodicalId":54794,"journal":{"name":"Journal of Intelligent & Robotic Systems","volume":"131 1","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2024-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"OffRoadSynth Open Dataset for Semantic Segmentation using Synthetic-Data-Based Weight Initialization for Autonomous UGV in Off-Road Environments\",\"authors\":\"Konrad Małek, Jacek Dybała, Andrzej Kordecki, Piotr Hondra, Katarzyna Kijania\",\"doi\":\"10.1007/s10846-024-02114-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This article concerns the issue of image semantic segmentation for the machine vision system of an autonomous Unmanned Ground Vehicle (UGV) moving in an off-road environment. Determining the meaning (semantics) of the areas visible in the recorded image provides a complete understanding of the scene surrounding the autonomous vehicle. It is crucial for the correct determination of a passable route. Nowadays, semantic segmentation is generally solved using convolutional neural networks (CNN), which can take an image as input and output the segmented image. However, proper training of the neural network requires the use of large amounts of data, which becomes problematic in the situation of low availability of large, dedicated image data sets that consider various off-road situations - driving on various types of roads, surrounded by diverse vegetation and in various weather and light conditions. This study introduces a synthetic image dataset called “OffRoadSynth” to address the training data scarcity for off-road scenarios. It has been shown that pre-training the neural network on this synthetic dataset improves image segmentation accuracy compared to other methods, such as random network weight initialization or using larger, generic datasets. Results suggest that using a smaller but domain-dedicated set of synthetic images to initialize network weights for training on the target real-world dataset may be an effective approach to improving semantic segmentation results of images, including those from off-road environments.</p>\",\"PeriodicalId\":54794,\"journal\":{\"name\":\"Journal of Intelligent & Robotic Systems\",\"volume\":\"131 1\",\"pages\":\"\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-05-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Intelligent & Robotic Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s10846-024-02114-2\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Intelligent & Robotic Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s10846-024-02114-2","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
OffRoadSynth Open Dataset for Semantic Segmentation using Synthetic-Data-Based Weight Initialization for Autonomous UGV in Off-Road Environments
This article concerns the issue of image semantic segmentation for the machine vision system of an autonomous Unmanned Ground Vehicle (UGV) moving in an off-road environment. Determining the meaning (semantics) of the areas visible in the recorded image provides a complete understanding of the scene surrounding the autonomous vehicle. It is crucial for the correct determination of a passable route. Nowadays, semantic segmentation is generally solved using convolutional neural networks (CNN), which can take an image as input and output the segmented image. However, proper training of the neural network requires the use of large amounts of data, which becomes problematic in the situation of low availability of large, dedicated image data sets that consider various off-road situations - driving on various types of roads, surrounded by diverse vegetation and in various weather and light conditions. This study introduces a synthetic image dataset called “OffRoadSynth” to address the training data scarcity for off-road scenarios. It has been shown that pre-training the neural network on this synthetic dataset improves image segmentation accuracy compared to other methods, such as random network weight initialization or using larger, generic datasets. Results suggest that using a smaller but domain-dedicated set of synthetic images to initialize network weights for training on the target real-world dataset may be an effective approach to improving semantic segmentation results of images, including those from off-road environments.
期刊介绍:
The Journal of Intelligent and Robotic Systems bridges the gap between theory and practice in all areas of intelligent systems and robotics. It publishes original, peer reviewed contributions from initial concept and theory to prototyping to final product development and commercialization.
On the theoretical side, the journal features papers focusing on intelligent systems engineering, distributed intelligence systems, multi-level systems, intelligent control, multi-robot systems, cooperation and coordination of unmanned vehicle systems, etc.
On the application side, the journal emphasizes autonomous systems, industrial robotic systems, multi-robot systems, aerial vehicles, mobile robot platforms, underwater robots, sensors, sensor-fusion, and sensor-based control. Readers will also find papers on real applications of intelligent and robotic systems (e.g., mechatronics, manufacturing, biomedical, underwater, humanoid, mobile/legged robot and space applications, etc.).