利用基于合成数据的权重初始化进行语义分割的 OffRoadSynth 开放数据集,适用于非公路环境中的自主式 UGV

IF 3.1 4区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Journal of Intelligent & Robotic Systems Pub Date : 2024-05-18 DOI:10.1007/s10846-024-02114-2
Konrad Małek, Jacek Dybała, Andrzej Kordecki, Piotr Hondra, Katarzyna Kijania
{"title":"利用基于合成数据的权重初始化进行语义分割的 OffRoadSynth 开放数据集,适用于非公路环境中的自主式 UGV","authors":"Konrad Małek, Jacek Dybała, Andrzej Kordecki, Piotr Hondra, Katarzyna Kijania","doi":"10.1007/s10846-024-02114-2","DOIUrl":null,"url":null,"abstract":"<p>This article concerns the issue of image semantic segmentation for the machine vision system of an autonomous Unmanned Ground Vehicle (UGV) moving in an off-road environment. Determining the meaning (semantics) of the areas visible in the recorded image provides a complete understanding of the scene surrounding the autonomous vehicle. It is crucial for the correct determination of a passable route. Nowadays, semantic segmentation is generally solved using convolutional neural networks (CNN), which can take an image as input and output the segmented image. However, proper training of the neural network requires the use of large amounts of data, which becomes problematic in the situation of low availability of large, dedicated image data sets that consider various off-road situations - driving on various types of roads, surrounded by diverse vegetation and in various weather and light conditions. This study introduces a synthetic image dataset called “OffRoadSynth” to address the training data scarcity for off-road scenarios. It has been shown that pre-training the neural network on this synthetic dataset improves image segmentation accuracy compared to other methods, such as random network weight initialization or using larger, generic datasets. Results suggest that using a smaller but domain-dedicated set of synthetic images to initialize network weights for training on the target real-world dataset may be an effective approach to improving semantic segmentation results of images, including those from off-road environments.</p>","PeriodicalId":54794,"journal":{"name":"Journal of Intelligent & Robotic Systems","volume":"131 1","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2024-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"OffRoadSynth Open Dataset for Semantic Segmentation using Synthetic-Data-Based Weight Initialization for Autonomous UGV in Off-Road Environments\",\"authors\":\"Konrad Małek, Jacek Dybała, Andrzej Kordecki, Piotr Hondra, Katarzyna Kijania\",\"doi\":\"10.1007/s10846-024-02114-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This article concerns the issue of image semantic segmentation for the machine vision system of an autonomous Unmanned Ground Vehicle (UGV) moving in an off-road environment. Determining the meaning (semantics) of the areas visible in the recorded image provides a complete understanding of the scene surrounding the autonomous vehicle. It is crucial for the correct determination of a passable route. Nowadays, semantic segmentation is generally solved using convolutional neural networks (CNN), which can take an image as input and output the segmented image. However, proper training of the neural network requires the use of large amounts of data, which becomes problematic in the situation of low availability of large, dedicated image data sets that consider various off-road situations - driving on various types of roads, surrounded by diverse vegetation and in various weather and light conditions. This study introduces a synthetic image dataset called “OffRoadSynth” to address the training data scarcity for off-road scenarios. It has been shown that pre-training the neural network on this synthetic dataset improves image segmentation accuracy compared to other methods, such as random network weight initialization or using larger, generic datasets. Results suggest that using a smaller but domain-dedicated set of synthetic images to initialize network weights for training on the target real-world dataset may be an effective approach to improving semantic segmentation results of images, including those from off-road environments.</p>\",\"PeriodicalId\":54794,\"journal\":{\"name\":\"Journal of Intelligent & Robotic Systems\",\"volume\":\"131 1\",\"pages\":\"\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-05-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Intelligent & Robotic Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s10846-024-02114-2\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Intelligent & Robotic Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s10846-024-02114-2","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

本文涉及在越野环境中行驶的自主无人地面车辆(UGV)机器视觉系统的图像语义分割问题。确定所记录图像中可见区域的含义(语义)有助于全面了解自动驾驶车辆周围的场景。这对于正确确定可通行路线至关重要。目前,语义分割一般使用卷积神经网络(CNN)来解决,它可以将图像作为输入,并输出分割后的图像。然而,神经网络的正确训练需要使用大量数据,而在考虑到各种越野情况(在各种类型的道路上行驶、周围有各种植被、在各种天气和光线条件下行驶)的大型专用图像数据集可用性较低的情况下,这就成了问题。本研究引入了一个名为 "OffRoadSynth "的合成图像数据集,以解决越野场景训练数据稀缺的问题。研究表明,与随机网络权重初始化或使用更大的通用数据集等其他方法相比,在该合成数据集上预训练神经网络可提高图像分割的准确性。研究结果表明,使用较小但领域专用的合成图像集来初始化网络权重,以便在目标真实世界数据集上进行训练,可能是改善图像语义分割结果(包括来自非道路环境的图像)的有效方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
OffRoadSynth Open Dataset for Semantic Segmentation using Synthetic-Data-Based Weight Initialization for Autonomous UGV in Off-Road Environments

This article concerns the issue of image semantic segmentation for the machine vision system of an autonomous Unmanned Ground Vehicle (UGV) moving in an off-road environment. Determining the meaning (semantics) of the areas visible in the recorded image provides a complete understanding of the scene surrounding the autonomous vehicle. It is crucial for the correct determination of a passable route. Nowadays, semantic segmentation is generally solved using convolutional neural networks (CNN), which can take an image as input and output the segmented image. However, proper training of the neural network requires the use of large amounts of data, which becomes problematic in the situation of low availability of large, dedicated image data sets that consider various off-road situations - driving on various types of roads, surrounded by diverse vegetation and in various weather and light conditions. This study introduces a synthetic image dataset called “OffRoadSynth” to address the training data scarcity for off-road scenarios. It has been shown that pre-training the neural network on this synthetic dataset improves image segmentation accuracy compared to other methods, such as random network weight initialization or using larger, generic datasets. Results suggest that using a smaller but domain-dedicated set of synthetic images to initialize network weights for training on the target real-world dataset may be an effective approach to improving semantic segmentation results of images, including those from off-road environments.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Intelligent & Robotic Systems
Journal of Intelligent & Robotic Systems 工程技术-机器人学
CiteScore
7.00
自引率
9.10%
发文量
219
审稿时长
6 months
期刊介绍: The Journal of Intelligent and Robotic Systems bridges the gap between theory and practice in all areas of intelligent systems and robotics. It publishes original, peer reviewed contributions from initial concept and theory to prototyping to final product development and commercialization. On the theoretical side, the journal features papers focusing on intelligent systems engineering, distributed intelligence systems, multi-level systems, intelligent control, multi-robot systems, cooperation and coordination of unmanned vehicle systems, etc. On the application side, the journal emphasizes autonomous systems, industrial robotic systems, multi-robot systems, aerial vehicles, mobile robot platforms, underwater robots, sensors, sensor-fusion, and sensor-based control. Readers will also find papers on real applications of intelligent and robotic systems (e.g., mechatronics, manufacturing, biomedical, underwater, humanoid, mobile/legged robot and space applications, etc.).
期刊最新文献
UAV Routing for Enhancing the Performance of a Classifier-in-the-loop DFT-VSLAM: A Dynamic Optical Flow Tracking VSLAM Method Design and Development of a Robust Control Platform for a 3-Finger Robotic Gripper Using EMG-Derived Hand Muscle Signals in NI LabVIEW Neural Network-based Adaptive Finite-time Control for 2-DOF Helicopter Systems with Prescribed Performance and Input Saturation Six-Degree-of-Freedom Pose Estimation Method for Multi-Source Feature Points Based on Fully Convolutional Neural Network
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1