{"title":"通过无监督对比学习了解信息丰富的健康指标","authors":"Katharina Rombach;Gabriel Michau;Wilfried Bürzle;Stefan Koller;Olga Fink","doi":"10.1109/TR.2024.3397394","DOIUrl":null,"url":null,"abstract":"Monitoring the health of complex industrial assets is crucial for safe and efficient operations. Health indicators that provide quantitative real-time insights into the health status of industrial assets over time serve as valuable tools for, e.g., fault detection or prognostics. This article proposes a novel, versatile, and unsupervised approach to learn health indicators using contrastive learning, where the <italic>operational time</i> serves as a proxy for degradation. To highlight its versatility, the approach is evaluated on two tasks and case studies with different characteristics: wear assessment of milling machines and fault detection of railway wheels. Our results show that the proposed methodology effectively learns a health indicator that follows the wear of milling machines (0.97 correlation on average) and is suitable for fault detection in railway wheels (<inline-formula><tex-math>$\\mathbf {88.7\\%}$</tex-math></inline-formula> balanced accuracy). The conducted experiments demonstrate the versatility of the approach for various systems and health conditions.","PeriodicalId":56305,"journal":{"name":"IEEE Transactions on Reliability","volume":"74 1","pages":"2408-2420"},"PeriodicalIF":5.0000,"publicationDate":"2024-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Learning Informative Health Indicators Through Unsupervised Contrastive Learning\",\"authors\":\"Katharina Rombach;Gabriel Michau;Wilfried Bürzle;Stefan Koller;Olga Fink\",\"doi\":\"10.1109/TR.2024.3397394\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Monitoring the health of complex industrial assets is crucial for safe and efficient operations. Health indicators that provide quantitative real-time insights into the health status of industrial assets over time serve as valuable tools for, e.g., fault detection or prognostics. This article proposes a novel, versatile, and unsupervised approach to learn health indicators using contrastive learning, where the <italic>operational time</i> serves as a proxy for degradation. To highlight its versatility, the approach is evaluated on two tasks and case studies with different characteristics: wear assessment of milling machines and fault detection of railway wheels. Our results show that the proposed methodology effectively learns a health indicator that follows the wear of milling machines (0.97 correlation on average) and is suitable for fault detection in railway wheels (<inline-formula><tex-math>$\\\\mathbf {88.7\\\\%}$</tex-math></inline-formula> balanced accuracy). The conducted experiments demonstrate the versatility of the approach for various systems and health conditions.\",\"PeriodicalId\":56305,\"journal\":{\"name\":\"IEEE Transactions on Reliability\",\"volume\":\"74 1\",\"pages\":\"2408-2420\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2024-03-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Reliability\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10531793/\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Reliability","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10531793/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
Learning Informative Health Indicators Through Unsupervised Contrastive Learning
Monitoring the health of complex industrial assets is crucial for safe and efficient operations. Health indicators that provide quantitative real-time insights into the health status of industrial assets over time serve as valuable tools for, e.g., fault detection or prognostics. This article proposes a novel, versatile, and unsupervised approach to learn health indicators using contrastive learning, where the operational time serves as a proxy for degradation. To highlight its versatility, the approach is evaluated on two tasks and case studies with different characteristics: wear assessment of milling machines and fault detection of railway wheels. Our results show that the proposed methodology effectively learns a health indicator that follows the wear of milling machines (0.97 correlation on average) and is suitable for fault detection in railway wheels ($\mathbf {88.7\%}$ balanced accuracy). The conducted experiments demonstrate the versatility of the approach for various systems and health conditions.
期刊介绍:
IEEE Transactions on Reliability is a refereed journal for the reliability and allied disciplines including, but not limited to, maintainability, physics of failure, life testing, prognostics, design and manufacture for reliability, reliability for systems of systems, network availability, mission success, warranty, safety, and various measures of effectiveness. Topics eligible for publication range from hardware to software, from materials to systems, from consumer and industrial devices to manufacturing plants, from individual items to networks, from techniques for making things better to ways of predicting and measuring behavior in the field. As an engineering subject that supports new and existing technologies, we constantly expand into new areas of the assurance sciences.