{"title":"基于 Seq2Seq 网络的集装箱再处理概率预测模型","authors":"Guojie Chen;Weidong Zhao;Xianhui Liu;Mingyue Wei","doi":"10.1109/TR.2024.3392919","DOIUrl":null,"url":null,"abstract":"Due to the strong uncertainty in the retrieval order of containers and the complex coupling relationship between container yard production equipment, it is challenging for yards to formulate an appropriate slot allocation strategy to control the proportion of rehandling containers. Meanwhile, the unpredictable performance of the slot allocation strategy results in the yard lacking the means to adjust the allocation strategy. To address these issues, an efficient container rehandling probability prediction model based on deep learning has been proposed to assist yards in formulating and adjusting slot allocation strategy. Moreover, we design a container slot allocation strategy driven by the predictive container rehandling probability for reducing the proportion of rehandling container at yards. Extensive experiments on the container storage dataset demonstrate that: 1) the prediction model based on deep learning enables to efficiently and precisely predict the container rehandling, 2) taking Seq2Seq network as the prediction layer of model outperforms other deep sequence models on MSE, MAE, and accuracy, and 3) the slot allocation strategy based on the predictive container rehandling probability can effectively reduce the probability of the rehandling container.","PeriodicalId":56305,"journal":{"name":"IEEE Transactions on Reliability","volume":"73 3","pages":"1569-1580"},"PeriodicalIF":5.0000,"publicationDate":"2024-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Container Rehandling Probability Prediction Model Based on Seq2Seq Network\",\"authors\":\"Guojie Chen;Weidong Zhao;Xianhui Liu;Mingyue Wei\",\"doi\":\"10.1109/TR.2024.3392919\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Due to the strong uncertainty in the retrieval order of containers and the complex coupling relationship between container yard production equipment, it is challenging for yards to formulate an appropriate slot allocation strategy to control the proportion of rehandling containers. Meanwhile, the unpredictable performance of the slot allocation strategy results in the yard lacking the means to adjust the allocation strategy. To address these issues, an efficient container rehandling probability prediction model based on deep learning has been proposed to assist yards in formulating and adjusting slot allocation strategy. Moreover, we design a container slot allocation strategy driven by the predictive container rehandling probability for reducing the proportion of rehandling container at yards. Extensive experiments on the container storage dataset demonstrate that: 1) the prediction model based on deep learning enables to efficiently and precisely predict the container rehandling, 2) taking Seq2Seq network as the prediction layer of model outperforms other deep sequence models on MSE, MAE, and accuracy, and 3) the slot allocation strategy based on the predictive container rehandling probability can effectively reduce the probability of the rehandling container.\",\"PeriodicalId\":56305,\"journal\":{\"name\":\"IEEE Transactions on Reliability\",\"volume\":\"73 3\",\"pages\":\"1569-1580\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2024-03-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Reliability\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10530509/\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Reliability","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10530509/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
Container Rehandling Probability Prediction Model Based on Seq2Seq Network
Due to the strong uncertainty in the retrieval order of containers and the complex coupling relationship between container yard production equipment, it is challenging for yards to formulate an appropriate slot allocation strategy to control the proportion of rehandling containers. Meanwhile, the unpredictable performance of the slot allocation strategy results in the yard lacking the means to adjust the allocation strategy. To address these issues, an efficient container rehandling probability prediction model based on deep learning has been proposed to assist yards in formulating and adjusting slot allocation strategy. Moreover, we design a container slot allocation strategy driven by the predictive container rehandling probability for reducing the proportion of rehandling container at yards. Extensive experiments on the container storage dataset demonstrate that: 1) the prediction model based on deep learning enables to efficiently and precisely predict the container rehandling, 2) taking Seq2Seq network as the prediction layer of model outperforms other deep sequence models on MSE, MAE, and accuracy, and 3) the slot allocation strategy based on the predictive container rehandling probability can effectively reduce the probability of the rehandling container.
期刊介绍:
IEEE Transactions on Reliability is a refereed journal for the reliability and allied disciplines including, but not limited to, maintainability, physics of failure, life testing, prognostics, design and manufacture for reliability, reliability for systems of systems, network availability, mission success, warranty, safety, and various measures of effectiveness. Topics eligible for publication range from hardware to software, from materials to systems, from consumer and industrial devices to manufacturing plants, from individual items to networks, from techniques for making things better to ways of predicting and measuring behavior in the field. As an engineering subject that supports new and existing technologies, we constantly expand into new areas of the assurance sciences.