{"title":"基于度量的量子相干性估算方法的严密性","authors":"Zimeng Zhang, Yongming Li and Yu Luo","doi":"10.1088/1612-202x/ad485a","DOIUrl":null,"url":null,"abstract":"With the advancement of quantum information science, the understanding of quantum coherence has become increasingly important. In this paper, we investigate the effects of different channels on quantum states and analyze the evolution process of quantum states during channel transmission. Our findings reveal variations in the impact of different channels on quantum coherence. Additionally, we explore the estimation of lower bounds on coherence after passing through these diverse channels. We observe that channel transmission has a certain influence on the tightness of lower bounds on quantum coherence. We conduct a detailed analysis of this influence and propose improvement method to enhance the tightness of the lower bound estimation. Based on our research results, we draw conclusions that unveil the characteristics of quantum coherence under different channel conditions. Furthermore, we provide an effective estimation method and improvement strategies to accurately assess the coherence of quantum states. This research holds significant implications for further advancements in quantum information processing and quantum communication.","PeriodicalId":17940,"journal":{"name":"Laser Physics Letters","volume":"59 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2024-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The tightness of the measure-based method to estimate quantum coherence\",\"authors\":\"Zimeng Zhang, Yongming Li and Yu Luo\",\"doi\":\"10.1088/1612-202x/ad485a\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the advancement of quantum information science, the understanding of quantum coherence has become increasingly important. In this paper, we investigate the effects of different channels on quantum states and analyze the evolution process of quantum states during channel transmission. Our findings reveal variations in the impact of different channels on quantum coherence. Additionally, we explore the estimation of lower bounds on coherence after passing through these diverse channels. We observe that channel transmission has a certain influence on the tightness of lower bounds on quantum coherence. We conduct a detailed analysis of this influence and propose improvement method to enhance the tightness of the lower bound estimation. Based on our research results, we draw conclusions that unveil the characteristics of quantum coherence under different channel conditions. Furthermore, we provide an effective estimation method and improvement strategies to accurately assess the coherence of quantum states. This research holds significant implications for further advancements in quantum information processing and quantum communication.\",\"PeriodicalId\":17940,\"journal\":{\"name\":\"Laser Physics Letters\",\"volume\":\"59 1\",\"pages\":\"\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-05-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Laser Physics Letters\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1088/1612-202x/ad485a\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Laser Physics Letters","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1612-202x/ad485a","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"OPTICS","Score":null,"Total":0}
The tightness of the measure-based method to estimate quantum coherence
With the advancement of quantum information science, the understanding of quantum coherence has become increasingly important. In this paper, we investigate the effects of different channels on quantum states and analyze the evolution process of quantum states during channel transmission. Our findings reveal variations in the impact of different channels on quantum coherence. Additionally, we explore the estimation of lower bounds on coherence after passing through these diverse channels. We observe that channel transmission has a certain influence on the tightness of lower bounds on quantum coherence. We conduct a detailed analysis of this influence and propose improvement method to enhance the tightness of the lower bound estimation. Based on our research results, we draw conclusions that unveil the characteristics of quantum coherence under different channel conditions. Furthermore, we provide an effective estimation method and improvement strategies to accurately assess the coherence of quantum states. This research holds significant implications for further advancements in quantum information processing and quantum communication.
期刊介绍:
Laser Physics Letters encompasses all aspects of laser physics sciences including, inter alia, spectroscopy, quantum electronics, quantum optics, quantum electrodynamics, nonlinear optics, atom optics, quantum computation, quantum information processing and storage, fiber optics and their applications in chemistry, biology, engineering and medicine.
The full list of subject areas covered is as follows:
-physics of lasers-
fibre optics and fibre lasers-
quantum optics and quantum information science-
ultrafast optics and strong-field physics-
nonlinear optics-
physics of cold trapped atoms-
laser methods in chemistry, biology, medicine and ecology-
laser spectroscopy-
novel laser materials and lasers-
optics of nanomaterials-
interaction of laser radiation with matter-
laser interaction with solids-
photonics