M. E. Ismagambetov, P. M. Ostrovsky, M. V. Feigel’man
{"title":"具有自旋轨道散射的无序 SF 结中的安德烈耶夫电导","authors":"M. E. Ismagambetov, P. M. Ostrovsky, M. V. Feigel’man","doi":"10.1007/s10909-024-03145-7","DOIUrl":null,"url":null,"abstract":"<div><p>We calculate the conductance of a junction between a disordered superconductor and a very strong half-metallic ferromagnet admitting electrons with only one spin projection. A usual mechanism of Andreev reflection is strongly suppressed in this case since Cooper pairs are composed of electrons with opposite spins. However, this obstacle can be overcome if we take into account spin-orbit scattering inside the superconductor. Spin-orbit scattering induces a fluctuational (zero on average) spin-triplet component of the superconducting condensate, which is enough to establish Andreev transport into a strong ferromagnet. This remarkably simple mechanism is quite versatile and can explain long-range triplet proximity effect in a number of experimental setups. One particular application of the suggested effect is to measure the spin-orbit scattering time <span>\\(\\tau _{\\text {SO}}\\)</span> in disordered superconducting materials. The value of Andreev conductance strongly depends on the parameter <span>\\(\\Delta \\tau _\\text {SO}\\)</span> and can be noticeable even in very disordered but relatively light metals like granular aluminum.</p></div>","PeriodicalId":641,"journal":{"name":"Journal of Low Temperature Physics","volume":"217 1-2","pages":"121 - 144"},"PeriodicalIF":1.1000,"publicationDate":"2024-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10909-024-03145-7.pdf","citationCount":"0","resultStr":"{\"title\":\"Andreev Conductance in Disordered SF Junctions with Spin-Orbit Scattering\",\"authors\":\"M. E. Ismagambetov, P. M. Ostrovsky, M. V. Feigel’man\",\"doi\":\"10.1007/s10909-024-03145-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We calculate the conductance of a junction between a disordered superconductor and a very strong half-metallic ferromagnet admitting electrons with only one spin projection. A usual mechanism of Andreev reflection is strongly suppressed in this case since Cooper pairs are composed of electrons with opposite spins. However, this obstacle can be overcome if we take into account spin-orbit scattering inside the superconductor. Spin-orbit scattering induces a fluctuational (zero on average) spin-triplet component of the superconducting condensate, which is enough to establish Andreev transport into a strong ferromagnet. This remarkably simple mechanism is quite versatile and can explain long-range triplet proximity effect in a number of experimental setups. One particular application of the suggested effect is to measure the spin-orbit scattering time <span>\\\\(\\\\tau _{\\\\text {SO}}\\\\)</span> in disordered superconducting materials. The value of Andreev conductance strongly depends on the parameter <span>\\\\(\\\\Delta \\\\tau _\\\\text {SO}\\\\)</span> and can be noticeable even in very disordered but relatively light metals like granular aluminum.</p></div>\",\"PeriodicalId\":641,\"journal\":{\"name\":\"Journal of Low Temperature Physics\",\"volume\":\"217 1-2\",\"pages\":\"121 - 144\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2024-05-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10909-024-03145-7.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Low Temperature Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10909-024-03145-7\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"PHYSICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Low Temperature Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s10909-024-03145-7","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
Andreev Conductance in Disordered SF Junctions with Spin-Orbit Scattering
We calculate the conductance of a junction between a disordered superconductor and a very strong half-metallic ferromagnet admitting electrons with only one spin projection. A usual mechanism of Andreev reflection is strongly suppressed in this case since Cooper pairs are composed of electrons with opposite spins. However, this obstacle can be overcome if we take into account spin-orbit scattering inside the superconductor. Spin-orbit scattering induces a fluctuational (zero on average) spin-triplet component of the superconducting condensate, which is enough to establish Andreev transport into a strong ferromagnet. This remarkably simple mechanism is quite versatile and can explain long-range triplet proximity effect in a number of experimental setups. One particular application of the suggested effect is to measure the spin-orbit scattering time \(\tau _{\text {SO}}\) in disordered superconducting materials. The value of Andreev conductance strongly depends on the parameter \(\Delta \tau _\text {SO}\) and can be noticeable even in very disordered but relatively light metals like granular aluminum.
期刊介绍:
The Journal of Low Temperature Physics publishes original papers and review articles on all areas of low temperature physics and cryogenics, including theoretical and experimental contributions. Subject areas include: Quantum solids, liquids and gases; Superfluidity; Superconductivity; Condensed matter physics; Experimental techniques; The Journal encourages the submission of Rapid Communications and Special Issues.