{"title":"用于锕系元素分析的快速衰变能谱学研究进展","authors":"Nathan Hines, S. T. P. Boyd, Geon-Bo Kim","doi":"10.1007/s10909-024-03132-y","DOIUrl":null,"url":null,"abstract":"<div><p>Decay energy spectroscopy (DES) is an increasingly popular technique for measuring isotopic composition of actinide samples for nuclear safeguards applications. Current approaches for actinide DES utilize milligram-scale external gold absorbers (> 0.1 nJ/K) that are integrated with actinide samples through mechanical kneading and are thermally connected to microcalorimeters using indium or gold wire bonds. This leads to relatively slow sensor rise time and, consequently, limits counting speed to a few counts per second. We are developing faster metallic magnetic calorimeter-based DES by integrating actinide samples with magnetic sensor materials. This reduces signal rise time and enables high counting speed while maintaining the ability to knead the radioactive source with the absorber. We have measured signal rise time of 0.7 μs with a 1.5 mg external gold absorber using this approach. We also demonstrated online DES operation using an Ortec DSPEC 50, a commercially available data acquisition system developed for semiconductor detectors.</p></div>","PeriodicalId":641,"journal":{"name":"Journal of Low Temperature Physics","volume":"216 Part 3","pages":"285 - 291"},"PeriodicalIF":1.1000,"publicationDate":"2024-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Progress Toward Fast Decay Energy Spectroscopy for Actinide Analysis\",\"authors\":\"Nathan Hines, S. T. P. Boyd, Geon-Bo Kim\",\"doi\":\"10.1007/s10909-024-03132-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Decay energy spectroscopy (DES) is an increasingly popular technique for measuring isotopic composition of actinide samples for nuclear safeguards applications. Current approaches for actinide DES utilize milligram-scale external gold absorbers (> 0.1 nJ/K) that are integrated with actinide samples through mechanical kneading and are thermally connected to microcalorimeters using indium or gold wire bonds. This leads to relatively slow sensor rise time and, consequently, limits counting speed to a few counts per second. We are developing faster metallic magnetic calorimeter-based DES by integrating actinide samples with magnetic sensor materials. This reduces signal rise time and enables high counting speed while maintaining the ability to knead the radioactive source with the absorber. We have measured signal rise time of 0.7 μs with a 1.5 mg external gold absorber using this approach. We also demonstrated online DES operation using an Ortec DSPEC 50, a commercially available data acquisition system developed for semiconductor detectors.</p></div>\",\"PeriodicalId\":641,\"journal\":{\"name\":\"Journal of Low Temperature Physics\",\"volume\":\"216 Part 3\",\"pages\":\"285 - 291\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2024-05-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Low Temperature Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10909-024-03132-y\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"PHYSICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Low Temperature Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s10909-024-03132-y","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
Progress Toward Fast Decay Energy Spectroscopy for Actinide Analysis
Decay energy spectroscopy (DES) is an increasingly popular technique for measuring isotopic composition of actinide samples for nuclear safeguards applications. Current approaches for actinide DES utilize milligram-scale external gold absorbers (> 0.1 nJ/K) that are integrated with actinide samples through mechanical kneading and are thermally connected to microcalorimeters using indium or gold wire bonds. This leads to relatively slow sensor rise time and, consequently, limits counting speed to a few counts per second. We are developing faster metallic magnetic calorimeter-based DES by integrating actinide samples with magnetic sensor materials. This reduces signal rise time and enables high counting speed while maintaining the ability to knead the radioactive source with the absorber. We have measured signal rise time of 0.7 μs with a 1.5 mg external gold absorber using this approach. We also demonstrated online DES operation using an Ortec DSPEC 50, a commercially available data acquisition system developed for semiconductor detectors.
期刊介绍:
The Journal of Low Temperature Physics publishes original papers and review articles on all areas of low temperature physics and cryogenics, including theoretical and experimental contributions. Subject areas include: Quantum solids, liquids and gases; Superfluidity; Superconductivity; Condensed matter physics; Experimental techniques; The Journal encourages the submission of Rapid Communications and Special Issues.