{"title":"基于分层细化 IGA 模型的柔性多体系统自适应冲击分析","authors":"Tobias Rückwald, Alexander Held, Robert Seifried","doi":"10.1007/s00419-024-02604-7","DOIUrl":null,"url":null,"abstract":"<div><p>Usually, detailed impact simulation models within flexible multibody systems have to be set up manually rather than being generated automatically. This is because the process requires prior knowledge of the time and location of the impact, as well as the element resolution within the contact area. If the penalty method is used to determine the occurring contact forces, the corresponding penalty factor also needs to be determined manually. This work, however, presents an adaptive algorithm to simulate impacts within flexible multibody systems fully automatically using reduced isogeometric analysis models, the floating frame of reference formulation, and quasistatic contact models for an efficient but still accurate simulation. The adaptive algorithm detects impacts in the system, determines the contact locations on the bodies, refines the contact area, and determines the penalty factor, and therefore automatically simulates impacts. The work shows how to automatically simulate impacts in flexible multibody systems without user action or prior knowledge of impact location and size. The first application example simulates significant elastodynamic effects within a long flexible rod. The goal is to validate the algorithm by preserving the wave propagation and energy of the system. The second application example simulates the impacts of two flexible double pendulums. This setup is a suitable benchmark for the complete adaptive impact analysis procedure as the flexible double pendulums undergo large rigid body motions.</p></div>","PeriodicalId":477,"journal":{"name":"Archive of Applied Mechanics","volume":"94 9","pages":"2643 - 2665"},"PeriodicalIF":2.2000,"publicationDate":"2024-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00419-024-02604-7.pdf","citationCount":"0","resultStr":"{\"title\":\"Adaptive impact analysis in flexible multibody systems based on hierarchically refined IGA models\",\"authors\":\"Tobias Rückwald, Alexander Held, Robert Seifried\",\"doi\":\"10.1007/s00419-024-02604-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Usually, detailed impact simulation models within flexible multibody systems have to be set up manually rather than being generated automatically. This is because the process requires prior knowledge of the time and location of the impact, as well as the element resolution within the contact area. If the penalty method is used to determine the occurring contact forces, the corresponding penalty factor also needs to be determined manually. This work, however, presents an adaptive algorithm to simulate impacts within flexible multibody systems fully automatically using reduced isogeometric analysis models, the floating frame of reference formulation, and quasistatic contact models for an efficient but still accurate simulation. The adaptive algorithm detects impacts in the system, determines the contact locations on the bodies, refines the contact area, and determines the penalty factor, and therefore automatically simulates impacts. The work shows how to automatically simulate impacts in flexible multibody systems without user action or prior knowledge of impact location and size. The first application example simulates significant elastodynamic effects within a long flexible rod. The goal is to validate the algorithm by preserving the wave propagation and energy of the system. The second application example simulates the impacts of two flexible double pendulums. This setup is a suitable benchmark for the complete adaptive impact analysis procedure as the flexible double pendulums undergo large rigid body motions.</p></div>\",\"PeriodicalId\":477,\"journal\":{\"name\":\"Archive of Applied Mechanics\",\"volume\":\"94 9\",\"pages\":\"2643 - 2665\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-05-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s00419-024-02604-7.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Archive of Applied Mechanics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00419-024-02604-7\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archive of Applied Mechanics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s00419-024-02604-7","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MECHANICS","Score":null,"Total":0}
Adaptive impact analysis in flexible multibody systems based on hierarchically refined IGA models
Usually, detailed impact simulation models within flexible multibody systems have to be set up manually rather than being generated automatically. This is because the process requires prior knowledge of the time and location of the impact, as well as the element resolution within the contact area. If the penalty method is used to determine the occurring contact forces, the corresponding penalty factor also needs to be determined manually. This work, however, presents an adaptive algorithm to simulate impacts within flexible multibody systems fully automatically using reduced isogeometric analysis models, the floating frame of reference formulation, and quasistatic contact models for an efficient but still accurate simulation. The adaptive algorithm detects impacts in the system, determines the contact locations on the bodies, refines the contact area, and determines the penalty factor, and therefore automatically simulates impacts. The work shows how to automatically simulate impacts in flexible multibody systems without user action or prior knowledge of impact location and size. The first application example simulates significant elastodynamic effects within a long flexible rod. The goal is to validate the algorithm by preserving the wave propagation and energy of the system. The second application example simulates the impacts of two flexible double pendulums. This setup is a suitable benchmark for the complete adaptive impact analysis procedure as the flexible double pendulums undergo large rigid body motions.
期刊介绍:
Archive of Applied Mechanics serves as a platform to communicate original research of scholarly value in all branches of theoretical and applied mechanics, i.e., in solid and fluid mechanics, dynamics and vibrations. It focuses on continuum mechanics in general, structural mechanics, biomechanics, micro- and nano-mechanics as well as hydrodynamics. In particular, the following topics are emphasised: thermodynamics of materials, material modeling, multi-physics, mechanical properties of materials, homogenisation, phase transitions, fracture and damage mechanics, vibration, wave propagation experimental mechanics as well as machine learning techniques in the context of applied mechanics.