{"title":"消除电荷转移分析中液结电位的偏差","authors":"Valentine I. Vullev and Jaime O. O`Mari","doi":"10.1149/11306.0003ecst","DOIUrl":null,"url":null,"abstract":"Liquid junctions in electrochemical cells introduce potentials that can strongly affect measurements. Such liquid-junction potential errors can exceed 100 mV. In the analysis of charge-transfer thermodynamics, error differences of 100 mV can have substantial impact on the interpretations. Discussion herein outlines an approach for eliminating the effects of liquid-junction potentials from charge-transfer analysis.","PeriodicalId":11473,"journal":{"name":"ECS Transactions","volume":"39 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Eliminating the Bias from Liquid-Junction Potential for Charge-Transfer Analysis\",\"authors\":\"Valentine I. Vullev and Jaime O. O`Mari\",\"doi\":\"10.1149/11306.0003ecst\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Liquid junctions in electrochemical cells introduce potentials that can strongly affect measurements. Such liquid-junction potential errors can exceed 100 mV. In the analysis of charge-transfer thermodynamics, error differences of 100 mV can have substantial impact on the interpretations. Discussion herein outlines an approach for eliminating the effects of liquid-junction potentials from charge-transfer analysis.\",\"PeriodicalId\":11473,\"journal\":{\"name\":\"ECS Transactions\",\"volume\":\"39 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ECS Transactions\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1149/11306.0003ecst\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ECS Transactions","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1149/11306.0003ecst","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Eliminating the Bias from Liquid-Junction Potential for Charge-Transfer Analysis
Liquid junctions in electrochemical cells introduce potentials that can strongly affect measurements. Such liquid-junction potential errors can exceed 100 mV. In the analysis of charge-transfer thermodynamics, error differences of 100 mV can have substantial impact on the interpretations. Discussion herein outlines an approach for eliminating the effects of liquid-junction potentials from charge-transfer analysis.