生物修复--近来向可持续环境的迈进

IF 3.5 Q3 ENGINEERING, ENVIRONMENTAL Environmental science. Advances Pub Date : 2024-05-18 DOI:10.1039/D3VA00358B
Sanjana M., Prajna R., Urvi S. Katti and Kavitha R. V.
{"title":"生物修复--近来向可持续环境的迈进","authors":"Sanjana M., Prajna R., Urvi S. Katti and Kavitha R. V.","doi":"10.1039/D3VA00358B","DOIUrl":null,"url":null,"abstract":"<p >The release of untreated effluents into waterbodies poses a major threat to the environment and human health. The increasing ratio of demands to rate of supply due to the ever-growing population has resulted in the need for large-scale and efficient manufacturing. One of the pitfalls of the fast-paced industrialisation of textiles is the current negligence towards environmental safety and health concerns. Textile dyes, especially azo dyes, are one of the most toxic industrial pollutants. To date, many conventional treatment methods such as aeration lagoons, filtration, sedimentation, flocculation, and coagulation have been used for degradation. Nevertheless, modern techniques such as bioremediation, phytoremediation, and mycoremediation have been proven to be more efficient and feasible due to their eco-friendly nature. Bioremediation is the process of degradation of effluents using microbes. There are two bioremediation strategies: <em>i.e.</em>, <em>ex situ</em> and <em>in situ</em>. <em>In situ</em> bioremediation involves the biological degradation of contaminants to benign products onsite. In the <em>ex situ</em> process, pollutants are removed from the contamination site, and then treated. Bioventing, biosparging, bioslurping, land farming, biopiles, and windrows are some techniques that have been in practice. Various microbiological, ecological, and geological factors affect the rate of bioremediation. To achieve accurate results, the maintenance of an optimal functional range is necessary. Technological advancements have led to new remediation techniques, <em>i.e.</em>, nanobioremediation. This review includes insights on the impacts of azo dyes; the principles of bioremediation and its strategies, advantages, and limitations; and future prospects involving nanobioremediation.</p>","PeriodicalId":72941,"journal":{"name":"Environmental science. Advances","volume":null,"pages":null},"PeriodicalIF":3.5000,"publicationDate":"2024-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/va/d3va00358b?page=search","citationCount":"0","resultStr":"{\"title\":\"Bioremediation – the recent drift towards a sustainable environment\",\"authors\":\"Sanjana M., Prajna R., Urvi S. Katti and Kavitha R. V.\",\"doi\":\"10.1039/D3VA00358B\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >The release of untreated effluents into waterbodies poses a major threat to the environment and human health. The increasing ratio of demands to rate of supply due to the ever-growing population has resulted in the need for large-scale and efficient manufacturing. One of the pitfalls of the fast-paced industrialisation of textiles is the current negligence towards environmental safety and health concerns. Textile dyes, especially azo dyes, are one of the most toxic industrial pollutants. To date, many conventional treatment methods such as aeration lagoons, filtration, sedimentation, flocculation, and coagulation have been used for degradation. Nevertheless, modern techniques such as bioremediation, phytoremediation, and mycoremediation have been proven to be more efficient and feasible due to their eco-friendly nature. Bioremediation is the process of degradation of effluents using microbes. There are two bioremediation strategies: <em>i.e.</em>, <em>ex situ</em> and <em>in situ</em>. <em>In situ</em> bioremediation involves the biological degradation of contaminants to benign products onsite. In the <em>ex situ</em> process, pollutants are removed from the contamination site, and then treated. Bioventing, biosparging, bioslurping, land farming, biopiles, and windrows are some techniques that have been in practice. Various microbiological, ecological, and geological factors affect the rate of bioremediation. To achieve accurate results, the maintenance of an optimal functional range is necessary. Technological advancements have led to new remediation techniques, <em>i.e.</em>, nanobioremediation. This review includes insights on the impacts of azo dyes; the principles of bioremediation and its strategies, advantages, and limitations; and future prospects involving nanobioremediation.</p>\",\"PeriodicalId\":72941,\"journal\":{\"name\":\"Environmental science. Advances\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-05-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.rsc.org/en/content/articlepdf/2024/va/d3va00358b?page=search\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental science. Advances\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2024/va/d3va00358b\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ENVIRONMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental science. Advances","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/va/d3va00358b","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

摘要

未经处理的污水排入水体对环境和人类健康构成重大威胁。由于人口不断增长,需求与供应的比率不断提高,因此需要大规模、高效率的生产。然而,忽视环境安全和环境问题是这种快节奏工业化的隐患。纺织染料,尤其是偶氮染料,是毒性最大的工业污染物之一。迄今为止,许多传统的处理方法,如曝气池、过滤、沉淀、絮凝、混凝等,都被用来降解染料。然而,生物修复、植物修复和菌体修复等现代技术因其生态友好的性质,已被证明更为有效和可行。生物修复是利用微生物降解污水的过程。生物修复有两种策略,即原位修复和就地修复。原位法是在现场将污染物生物降解为良性产物。在异地处理过程中,污染物被移出污染现场,然后进行处理。生物通风、生物淤积、生物冲刷、土地耕作、生物堆和风积层是一些已在实践中应用的技术。各种微生物、生态和地质因素都会影响生物修复的速度。为了取得准确的结果,必须保持最佳的功能范围。技术进步带来了修复技术的新方法,即纳米生物修复。本综述介绍了偶氮染料的影响、生物修复原理及其策略、纳米生物修复的优势、局限性和未来前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Bioremediation – the recent drift towards a sustainable environment

The release of untreated effluents into waterbodies poses a major threat to the environment and human health. The increasing ratio of demands to rate of supply due to the ever-growing population has resulted in the need for large-scale and efficient manufacturing. One of the pitfalls of the fast-paced industrialisation of textiles is the current negligence towards environmental safety and health concerns. Textile dyes, especially azo dyes, are one of the most toxic industrial pollutants. To date, many conventional treatment methods such as aeration lagoons, filtration, sedimentation, flocculation, and coagulation have been used for degradation. Nevertheless, modern techniques such as bioremediation, phytoremediation, and mycoremediation have been proven to be more efficient and feasible due to their eco-friendly nature. Bioremediation is the process of degradation of effluents using microbes. There are two bioremediation strategies: i.e., ex situ and in situ. In situ bioremediation involves the biological degradation of contaminants to benign products onsite. In the ex situ process, pollutants are removed from the contamination site, and then treated. Bioventing, biosparging, bioslurping, land farming, biopiles, and windrows are some techniques that have been in practice. Various microbiological, ecological, and geological factors affect the rate of bioremediation. To achieve accurate results, the maintenance of an optimal functional range is necessary. Technological advancements have led to new remediation techniques, i.e., nanobioremediation. This review includes insights on the impacts of azo dyes; the principles of bioremediation and its strategies, advantages, and limitations; and future prospects involving nanobioremediation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
0
期刊最新文献
Back cover Carbon dots: a promising path towards environmental sustainability Back cover A hybrid anion exchanger with nanoscale zero valent iron for trace hexavalent chromium removal from drinking water† Intensive aquaculture affects lake's trophic status and aquatic floral diversity†
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1