呼吸机诱发的肺损伤促进胸膜腔内的炎症

IF 5.9 2区 医学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY American Journal of Respiratory Cell and Molecular Biology Pub Date : 2024-07-01 DOI:10.1165/rcmb.2023-0332OC
Rhianna F Baldi, Marissa W Koh, Chubicka Thomas, Tomasz Sabbat, Bincheng Wang, Stefania Tsatsari, Kieron Young, Alexander Wilson-Slomkowski, Sanooj Soni, Kieran P O'Dea, Brijesh V Patel, Masao Takata, Michael R Wilson
{"title":"呼吸机诱发的肺损伤促进胸膜腔内的炎症","authors":"Rhianna F Baldi, Marissa W Koh, Chubicka Thomas, Tomasz Sabbat, Bincheng Wang, Stefania Tsatsari, Kieron Young, Alexander Wilson-Slomkowski, Sanooj Soni, Kieran P O'Dea, Brijesh V Patel, Masao Takata, Michael R Wilson","doi":"10.1165/rcmb.2023-0332OC","DOIUrl":null,"url":null,"abstract":"<p><p>Mechanical ventilation contributes to the morbidity and mortality of patients in intensive care, likely through the exacerbation and dissemination of inflammation. Despite the proximity of the pleural cavity to the lungs and exposure to physical forces, little attention has been paid to its potential as an inflammatory source during ventilation. Here, we investigate the pleural cavity as a novel site of inflammation during ventilator-induced lung injury. Mice were subjected to low or high tidal volume ventilation strategies for up to 3 hours. Ventilation with a high tidal volume significantly increased cytokine and total protein levels in BAL and pleural lavage fluid. In contrast, acid aspiration, explored as an alternative model of injury, only promoted intraalveolar inflammation, with no effect on the pleural space. Resident pleural macrophages demonstrated enhanced activation after injurious ventilation, including upregulated ICAM-1 and IL-1β expression, and the release of extracellular vesicles. <i>In vivo</i> ventilation and <i>in vitro</i> stretch of pleural mesothelial cells promoted ATP secretion, whereas purinergic receptor inhibition substantially attenuated extracellular vesicles and cytokine levels in the pleural space. Finally, labeled protein rapidly translocated from the pleural cavity into the circulation during high tidal volume ventilation, to a significantly greater extent than that of protein translocation from the alveolar space. Overall, we conclude that injurious ventilation induces pleural cavity inflammation mediated through purinergic pathway signaling and likely enhances the dissemination of mediators into the vasculature. This previously unidentified consequence of mechanical ventilation potentially implicates the pleural space as a focus of research and novel avenue for intervention in critical care.</p>","PeriodicalId":7655,"journal":{"name":"American Journal of Respiratory Cell and Molecular Biology","volume":null,"pages":null},"PeriodicalIF":5.9000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11225872/pdf/","citationCount":"0","resultStr":"{\"title\":\"Ventilator-induced Lung Injury Promotes Inflammation within the Pleural Cavity.\",\"authors\":\"Rhianna F Baldi, Marissa W Koh, Chubicka Thomas, Tomasz Sabbat, Bincheng Wang, Stefania Tsatsari, Kieron Young, Alexander Wilson-Slomkowski, Sanooj Soni, Kieran P O'Dea, Brijesh V Patel, Masao Takata, Michael R Wilson\",\"doi\":\"10.1165/rcmb.2023-0332OC\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Mechanical ventilation contributes to the morbidity and mortality of patients in intensive care, likely through the exacerbation and dissemination of inflammation. Despite the proximity of the pleural cavity to the lungs and exposure to physical forces, little attention has been paid to its potential as an inflammatory source during ventilation. Here, we investigate the pleural cavity as a novel site of inflammation during ventilator-induced lung injury. Mice were subjected to low or high tidal volume ventilation strategies for up to 3 hours. Ventilation with a high tidal volume significantly increased cytokine and total protein levels in BAL and pleural lavage fluid. In contrast, acid aspiration, explored as an alternative model of injury, only promoted intraalveolar inflammation, with no effect on the pleural space. Resident pleural macrophages demonstrated enhanced activation after injurious ventilation, including upregulated ICAM-1 and IL-1β expression, and the release of extracellular vesicles. <i>In vivo</i> ventilation and <i>in vitro</i> stretch of pleural mesothelial cells promoted ATP secretion, whereas purinergic receptor inhibition substantially attenuated extracellular vesicles and cytokine levels in the pleural space. Finally, labeled protein rapidly translocated from the pleural cavity into the circulation during high tidal volume ventilation, to a significantly greater extent than that of protein translocation from the alveolar space. Overall, we conclude that injurious ventilation induces pleural cavity inflammation mediated through purinergic pathway signaling and likely enhances the dissemination of mediators into the vasculature. This previously unidentified consequence of mechanical ventilation potentially implicates the pleural space as a focus of research and novel avenue for intervention in critical care.</p>\",\"PeriodicalId\":7655,\"journal\":{\"name\":\"American Journal of Respiratory Cell and Molecular Biology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.9000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11225872/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"American Journal of Respiratory Cell and Molecular Biology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1165/rcmb.2023-0332OC\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"American Journal of Respiratory Cell and Molecular Biology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1165/rcmb.2023-0332OC","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

机械通气很可能通过炎症的加剧和传播导致重症监护患者的发病率和死亡率。尽管胸膜腔靠近肺部并暴露于物理力量之下,但很少有人关注胸膜腔在通气过程中作为炎症源的潜力。在此,我们研究了胸膜腔作为通气诱导的肺损伤过程中一个新的炎症部位。对小鼠进行长达 3 小时的低潮气量或高潮气量通气。高潮气量通气明显增加了支气管肺泡和胸腔灌洗液中的细胞因子和总蛋白水平。相比之下,酸吸入作为一种替代损伤模型,只促进了肺泡内炎症,对胸膜腔没有影响。损伤性通气后,胸膜巨噬细胞的活化能力增强,包括 ICAM-1 和白细胞介素-1β 的表达上调以及细胞外囊泡的释放。胸膜间皮细胞的体内通气和体外拉伸促进了 ATP 的分泌,而嘌呤能受体抑制则大大降低了胸膜腔内细胞外囊泡和细胞因子的水平。最后,在高潮气量通气过程中,标记蛋白质迅速从胸膜腔转移到血液循环中,其程度明显高于从肺泡空间转移的蛋白质。总之,我们得出结论:损伤性通气通过嘌呤能通路信号传导诱导胸膜腔炎症,并可能加强介质向血管的传播。机械通气造成的这一之前未被发现的后果可能会使胸膜腔成为重症监护的研究重点和新的干预途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Ventilator-induced Lung Injury Promotes Inflammation within the Pleural Cavity.

Mechanical ventilation contributes to the morbidity and mortality of patients in intensive care, likely through the exacerbation and dissemination of inflammation. Despite the proximity of the pleural cavity to the lungs and exposure to physical forces, little attention has been paid to its potential as an inflammatory source during ventilation. Here, we investigate the pleural cavity as a novel site of inflammation during ventilator-induced lung injury. Mice were subjected to low or high tidal volume ventilation strategies for up to 3 hours. Ventilation with a high tidal volume significantly increased cytokine and total protein levels in BAL and pleural lavage fluid. In contrast, acid aspiration, explored as an alternative model of injury, only promoted intraalveolar inflammation, with no effect on the pleural space. Resident pleural macrophages demonstrated enhanced activation after injurious ventilation, including upregulated ICAM-1 and IL-1β expression, and the release of extracellular vesicles. In vivo ventilation and in vitro stretch of pleural mesothelial cells promoted ATP secretion, whereas purinergic receptor inhibition substantially attenuated extracellular vesicles and cytokine levels in the pleural space. Finally, labeled protein rapidly translocated from the pleural cavity into the circulation during high tidal volume ventilation, to a significantly greater extent than that of protein translocation from the alveolar space. Overall, we conclude that injurious ventilation induces pleural cavity inflammation mediated through purinergic pathway signaling and likely enhances the dissemination of mediators into the vasculature. This previously unidentified consequence of mechanical ventilation potentially implicates the pleural space as a focus of research and novel avenue for intervention in critical care.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
11.20
自引率
3.10%
发文量
370
审稿时长
3-8 weeks
期刊介绍: The American Journal of Respiratory Cell and Molecular Biology publishes papers that report significant and original observations in the area of pulmonary biology. The focus of the Journal includes, but is not limited to, cellular, biochemical, molecular, developmental, genetic, and immunologic studies of lung cells and molecules.
期刊最新文献
A Single-Cell RNA Sequencing Atlas of the COPD Distal Lung to Predict Cell-Cell Communication. Reexamining the Role of Pulmonary Lipids in the Pathogenesis of Pulmonary Fibrosis. HPS6 Deficiency Leads to Reduced Vacuolar-Type H+-ATPase and Impaired Biogenesis of Lamellar Bodies in Alveolar Type II Cells. Novel Hemodynamic, Vascular Lesion, and Cytokine/Chemokine Differences Regarding Sex in a Pulmonary Arterial Hypertension Model. Novel Small-Molecule ROCK2 Inhibitor GNS-3595 Attenuates Pulmonary Fibrosis in Preclinical Studies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1