Zhi Fu , Yi Chang , Tao Xiong , Wen-Kai Gao , Kui Li , Yu Liu
{"title":"关于在小重叠障碍碰撞试验中应用弥漫轴突多轴综合评价进行脑损伤评估的研究。","authors":"Zhi Fu , Yi Chang , Tao Xiong , Wen-Kai Gao , Kui Li , Yu Liu","doi":"10.1016/j.cjtee.2024.04.005","DOIUrl":null,"url":null,"abstract":"<div><h3>Purpose</h3><p>Head injury criterion (HIC) companied by a rotation-based metric was widely believed to be helpful for head injury prediction in road traffic accidents. Recently, the Euro-New Car Assessment Program utilized a newly developed metric called diffuse axonal multi-axis general evaluation (DAMAGE) to explain test device for human occupant restraint (THOR) head injury, which demonstrated excellent ability in capturing concussions and diffuse axonal injuries. However, there is still a lack of comprehensive understanding regarding the effectiveness of using DAMAGE for Hybrid Ⅲ 50th percentile male dummy (H50th) head injury assessment. The objective of this study is to determine whether the DAMAGE could capture the risk of H50th brain injury during small overlap barrier tests.</p></div><div><h3>Methods</h3><p>To achieve this objective, a total of 24 vehicle crash loading curves were collected as input data for the multi-body simulation. Two commercially available mathematical dynamic models, namely H50th and THOR, were utilized to investigate the differences in head injury response. Subsequently, a decision method known as simple additive weighting was employed to establish a comprehensive brain injury metric by incorporating the weighted HIC and either DAMAGE or brain injury criterion. Furthermore, 35 sets of vehicle crash test data were used to analyze these brain injury metrics.</p></div><div><h3>Results</h3><p>The rotational displacement of the THOR head is significantly greater than that of the H50th head. The maximum linear and rotational head accelerations experienced by H50th and THOR models were (544.6 ± 341.7) m/s<sup>2</sup>, (2468.2 ± 1309.4) rad/s<sup>2</sup> and (715.2 ± 332.8) m/s<sup>2</sup>, (3778.7 ± 1660.6) rad/s<sup>2</sup>, respectively. Under the same loading condition during small overlap barrier (SOB) tests, THOR exhibits a higher risk of head injury compared to the H50th model. It was observed that the overall head injury response during the small overlap left test condition is greater than that during the small overlap right test. Additionally, an equation was formulated to establish the necessary relationship between the DAMAGE values of THOR and H50th.</p></div><div><h3>Conclusion</h3><p>If H50th rather than THOR is employed as an evaluation tool in SOB crash tests, newly designed vehicles are more likely to achieve superior performance scores. According to the current injury curve for DAMAGE and brain injury criterion, it is highly recommended that HIC along with DAMAGE was prioritized for brain injury assessment in SOB tests.</p></div>","PeriodicalId":51555,"journal":{"name":"Chinese Journal of Traumatology","volume":"27 4","pages":"Pages 200-210"},"PeriodicalIF":1.8000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1008127524000567/pdfft?md5=b4bde7a09029508e141e4f70f8e1e473&pid=1-s2.0-S1008127524000567-main.pdf","citationCount":"0","resultStr":"{\"title\":\"A study on the application of diffuse axonal multi-axis general evaluation for brain injury assessment in small overlap barrier crash test\",\"authors\":\"Zhi Fu , Yi Chang , Tao Xiong , Wen-Kai Gao , Kui Li , Yu Liu\",\"doi\":\"10.1016/j.cjtee.2024.04.005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Purpose</h3><p>Head injury criterion (HIC) companied by a rotation-based metric was widely believed to be helpful for head injury prediction in road traffic accidents. Recently, the Euro-New Car Assessment Program utilized a newly developed metric called diffuse axonal multi-axis general evaluation (DAMAGE) to explain test device for human occupant restraint (THOR) head injury, which demonstrated excellent ability in capturing concussions and diffuse axonal injuries. However, there is still a lack of comprehensive understanding regarding the effectiveness of using DAMAGE for Hybrid Ⅲ 50th percentile male dummy (H50th) head injury assessment. The objective of this study is to determine whether the DAMAGE could capture the risk of H50th brain injury during small overlap barrier tests.</p></div><div><h3>Methods</h3><p>To achieve this objective, a total of 24 vehicle crash loading curves were collected as input data for the multi-body simulation. Two commercially available mathematical dynamic models, namely H50th and THOR, were utilized to investigate the differences in head injury response. Subsequently, a decision method known as simple additive weighting was employed to establish a comprehensive brain injury metric by incorporating the weighted HIC and either DAMAGE or brain injury criterion. Furthermore, 35 sets of vehicle crash test data were used to analyze these brain injury metrics.</p></div><div><h3>Results</h3><p>The rotational displacement of the THOR head is significantly greater than that of the H50th head. The maximum linear and rotational head accelerations experienced by H50th and THOR models were (544.6 ± 341.7) m/s<sup>2</sup>, (2468.2 ± 1309.4) rad/s<sup>2</sup> and (715.2 ± 332.8) m/s<sup>2</sup>, (3778.7 ± 1660.6) rad/s<sup>2</sup>, respectively. Under the same loading condition during small overlap barrier (SOB) tests, THOR exhibits a higher risk of head injury compared to the H50th model. It was observed that the overall head injury response during the small overlap left test condition is greater than that during the small overlap right test. Additionally, an equation was formulated to establish the necessary relationship between the DAMAGE values of THOR and H50th.</p></div><div><h3>Conclusion</h3><p>If H50th rather than THOR is employed as an evaluation tool in SOB crash tests, newly designed vehicles are more likely to achieve superior performance scores. According to the current injury curve for DAMAGE and brain injury criterion, it is highly recommended that HIC along with DAMAGE was prioritized for brain injury assessment in SOB tests.</p></div>\",\"PeriodicalId\":51555,\"journal\":{\"name\":\"Chinese Journal of Traumatology\",\"volume\":\"27 4\",\"pages\":\"Pages 200-210\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S1008127524000567/pdfft?md5=b4bde7a09029508e141e4f70f8e1e473&pid=1-s2.0-S1008127524000567-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chinese Journal of Traumatology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1008127524000567\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ORTHOPEDICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Journal of Traumatology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1008127524000567","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ORTHOPEDICS","Score":null,"Total":0}
A study on the application of diffuse axonal multi-axis general evaluation for brain injury assessment in small overlap barrier crash test
Purpose
Head injury criterion (HIC) companied by a rotation-based metric was widely believed to be helpful for head injury prediction in road traffic accidents. Recently, the Euro-New Car Assessment Program utilized a newly developed metric called diffuse axonal multi-axis general evaluation (DAMAGE) to explain test device for human occupant restraint (THOR) head injury, which demonstrated excellent ability in capturing concussions and diffuse axonal injuries. However, there is still a lack of comprehensive understanding regarding the effectiveness of using DAMAGE for Hybrid Ⅲ 50th percentile male dummy (H50th) head injury assessment. The objective of this study is to determine whether the DAMAGE could capture the risk of H50th brain injury during small overlap barrier tests.
Methods
To achieve this objective, a total of 24 vehicle crash loading curves were collected as input data for the multi-body simulation. Two commercially available mathematical dynamic models, namely H50th and THOR, were utilized to investigate the differences in head injury response. Subsequently, a decision method known as simple additive weighting was employed to establish a comprehensive brain injury metric by incorporating the weighted HIC and either DAMAGE or brain injury criterion. Furthermore, 35 sets of vehicle crash test data were used to analyze these brain injury metrics.
Results
The rotational displacement of the THOR head is significantly greater than that of the H50th head. The maximum linear and rotational head accelerations experienced by H50th and THOR models were (544.6 ± 341.7) m/s2, (2468.2 ± 1309.4) rad/s2 and (715.2 ± 332.8) m/s2, (3778.7 ± 1660.6) rad/s2, respectively. Under the same loading condition during small overlap barrier (SOB) tests, THOR exhibits a higher risk of head injury compared to the H50th model. It was observed that the overall head injury response during the small overlap left test condition is greater than that during the small overlap right test. Additionally, an equation was formulated to establish the necessary relationship between the DAMAGE values of THOR and H50th.
Conclusion
If H50th rather than THOR is employed as an evaluation tool in SOB crash tests, newly designed vehicles are more likely to achieve superior performance scores. According to the current injury curve for DAMAGE and brain injury criterion, it is highly recommended that HIC along with DAMAGE was prioritized for brain injury assessment in SOB tests.
期刊介绍:
Chinese Journal of Traumatology (CJT, ISSN 1008-1275) was launched in 1998 and is a peer-reviewed English journal authorized by Chinese Association of Trauma, Chinese Medical Association. It is multidisciplinary and designed to provide the most current and relevant information for both the clinical and basic research in the field of traumatic medicine. CJT primarily publishes expert forums, original papers, case reports and so on. Topics cover trauma system and management, surgical procedures, acute care, rehabilitation, post-traumatic complications, translational medicine, traffic medicine and other related areas. The journal especially emphasizes clinical application, technique, surgical video, guideline, recommendations for more effective surgical approaches.