{"title":"在线与面授交汇处的神经信息学实践教育:从 NeuroHackademy 学到的经验。","authors":"Ariel Rokem, Noah C Benson","doi":"10.1007/s12021-024-09666-6","DOIUrl":null,"url":null,"abstract":"<p><p>NeuroHackademy ( https://neurohackademy.org ) is a two-week event designed to train early-career neuroscience researchers in data science methods and their application to neuroimaging. The event seeks to bridge the big data skills gap by introducing participants to data science methods and skills that are often ignored in traditional curricula. Such skills are needed for the analysis and interpretation of the kinds of large and complex datasets that have become increasingly important to neuroimaging research due to concerted data collection efforts. In 2020, the event rapidly pivoted from an in-person event to an online event that included hundreds of participants from all over the world. This experience and those of the participants substantially changed our valuation of large online-accessible events. In subsequent events held in 2022 and 2023, we have developed a \"hybrid\" format that includes both online and in-person participants. We discuss the technical and sociotechnical elements of hybrid events and discuss some of the lessons we have learned while organizing them. We emphasize in particular the role that these events can play in creating a global and inclusive community of practice in the intersection of neuroimaging and data science.</p>","PeriodicalId":49761,"journal":{"name":"Neuroinformatics","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2024-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hands-On Neuroinformatics Education at the Crossroads of Online and In-Person: Lessons Learned from NeuroHackademy.\",\"authors\":\"Ariel Rokem, Noah C Benson\",\"doi\":\"10.1007/s12021-024-09666-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>NeuroHackademy ( https://neurohackademy.org ) is a two-week event designed to train early-career neuroscience researchers in data science methods and their application to neuroimaging. The event seeks to bridge the big data skills gap by introducing participants to data science methods and skills that are often ignored in traditional curricula. Such skills are needed for the analysis and interpretation of the kinds of large and complex datasets that have become increasingly important to neuroimaging research due to concerted data collection efforts. In 2020, the event rapidly pivoted from an in-person event to an online event that included hundreds of participants from all over the world. This experience and those of the participants substantially changed our valuation of large online-accessible events. In subsequent events held in 2022 and 2023, we have developed a \\\"hybrid\\\" format that includes both online and in-person participants. We discuss the technical and sociotechnical elements of hybrid events and discuss some of the lessons we have learned while organizing them. We emphasize in particular the role that these events can play in creating a global and inclusive community of practice in the intersection of neuroimaging and data science.</p>\",\"PeriodicalId\":49761,\"journal\":{\"name\":\"Neuroinformatics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-05-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neuroinformatics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s12021-024-09666-6\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuroinformatics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s12021-024-09666-6","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Hands-On Neuroinformatics Education at the Crossroads of Online and In-Person: Lessons Learned from NeuroHackademy.
NeuroHackademy ( https://neurohackademy.org ) is a two-week event designed to train early-career neuroscience researchers in data science methods and their application to neuroimaging. The event seeks to bridge the big data skills gap by introducing participants to data science methods and skills that are often ignored in traditional curricula. Such skills are needed for the analysis and interpretation of the kinds of large and complex datasets that have become increasingly important to neuroimaging research due to concerted data collection efforts. In 2020, the event rapidly pivoted from an in-person event to an online event that included hundreds of participants from all over the world. This experience and those of the participants substantially changed our valuation of large online-accessible events. In subsequent events held in 2022 and 2023, we have developed a "hybrid" format that includes both online and in-person participants. We discuss the technical and sociotechnical elements of hybrid events and discuss some of the lessons we have learned while organizing them. We emphasize in particular the role that these events can play in creating a global and inclusive community of practice in the intersection of neuroimaging and data science.
期刊介绍:
Neuroinformatics publishes original articles and reviews with an emphasis on data structure and software tools related to analysis, modeling, integration, and sharing in all areas of neuroscience research. The editors particularly invite contributions on: (1) Theory and methodology, including discussions on ontologies, modeling approaches, database design, and meta-analyses; (2) Descriptions of developed databases and software tools, and of the methods for their distribution; (3) Relevant experimental results, such as reports accompanie by the release of massive data sets; (4) Computational simulations of models integrating and organizing complex data; and (5) Neuroengineering approaches, including hardware, robotics, and information theory studies.