研究水热法生产的氧化锌纳米棒以及锂作为一种可能的掺杂剂的掺入机理

IF 2.8 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC Micro and Nano Engineering Pub Date : 2024-05-15 DOI:10.1016/j.mne.2024.100260
Georgios P. Papageorgiou , Nikolaos Boukos , Maria Androulidaki , Dimitrios Christofilos , Vassilis Psycharis , Maria Katsikini , Fani Pinakidou , Eleni C. Paloura , Christoforos Krontiras , Eleni Makarona
{"title":"研究水热法生产的氧化锌纳米棒以及锂作为一种可能的掺杂剂的掺入机理","authors":"Georgios P. Papageorgiou ,&nbsp;Nikolaos Boukos ,&nbsp;Maria Androulidaki ,&nbsp;Dimitrios Christofilos ,&nbsp;Vassilis Psycharis ,&nbsp;Maria Katsikini ,&nbsp;Fani Pinakidou ,&nbsp;Eleni C. Paloura ,&nbsp;Christoforos Krontiras ,&nbsp;Eleni Makarona","doi":"10.1016/j.mne.2024.100260","DOIUrl":null,"url":null,"abstract":"<div><p>Zinc oxide (ZnO) has emerged as one of the most promising candidates for mass-producing cost-efficient optoelectronic devices. This is primarily because it can be synthesized in high-quality nanostructures on a wide range of substrates through relatively simple chemical methods. However, producing p-type ZnO, regardless of the chosen method, remains an open and controversial issue. In this work, Li-doped ZnO nanostructures of varying Li-cocnentration were produced via a two-step hydrothermal growth synthesis and an in-depth analysis based on with Field Emission Scanning Electron Microscopy (FE-SEM), X-ray diffraction (XRD), Raman Spectroscopy, Extended X-Ray Absorption Fine Structure (EXAFS) Spectroscopy, and temperature-dependent Photoluminescence (PL) was carried out in an effort to gain insights into the Li-incorporation mechanisms. The findings indicated a strong interplay between the native defects responsible for the inherent n-type character of the material and Li incorporation. It is suggested that this interplay hinders the successful conversion of the Li-doped nanorods into p-type nanostructures and that when employing the hydrothermal approach it is essential to identify the precise conditions necessary for genuine Li incorporation as a Zn substitutional.</p></div>","PeriodicalId":37111,"journal":{"name":"Micro and Nano Engineering","volume":"23 ","pages":"Article 100260"},"PeriodicalIF":2.8000,"publicationDate":"2024-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590007224000236/pdfft?md5=9550786a76dde3a2bafc733a00d2da47&pid=1-s2.0-S2590007224000236-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Investigation of hydrothermally-produced ZnO nanorods and the mechanisms of Li incorporation as a possible dopant\",\"authors\":\"Georgios P. Papageorgiou ,&nbsp;Nikolaos Boukos ,&nbsp;Maria Androulidaki ,&nbsp;Dimitrios Christofilos ,&nbsp;Vassilis Psycharis ,&nbsp;Maria Katsikini ,&nbsp;Fani Pinakidou ,&nbsp;Eleni C. Paloura ,&nbsp;Christoforos Krontiras ,&nbsp;Eleni Makarona\",\"doi\":\"10.1016/j.mne.2024.100260\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Zinc oxide (ZnO) has emerged as one of the most promising candidates for mass-producing cost-efficient optoelectronic devices. This is primarily because it can be synthesized in high-quality nanostructures on a wide range of substrates through relatively simple chemical methods. However, producing p-type ZnO, regardless of the chosen method, remains an open and controversial issue. In this work, Li-doped ZnO nanostructures of varying Li-cocnentration were produced via a two-step hydrothermal growth synthesis and an in-depth analysis based on with Field Emission Scanning Electron Microscopy (FE-SEM), X-ray diffraction (XRD), Raman Spectroscopy, Extended X-Ray Absorption Fine Structure (EXAFS) Spectroscopy, and temperature-dependent Photoluminescence (PL) was carried out in an effort to gain insights into the Li-incorporation mechanisms. The findings indicated a strong interplay between the native defects responsible for the inherent n-type character of the material and Li incorporation. It is suggested that this interplay hinders the successful conversion of the Li-doped nanorods into p-type nanostructures and that when employing the hydrothermal approach it is essential to identify the precise conditions necessary for genuine Li incorporation as a Zn substitutional.</p></div>\",\"PeriodicalId\":37111,\"journal\":{\"name\":\"Micro and Nano Engineering\",\"volume\":\"23 \",\"pages\":\"Article 100260\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-05-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2590007224000236/pdfft?md5=9550786a76dde3a2bafc733a00d2da47&pid=1-s2.0-S2590007224000236-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Micro and Nano Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2590007224000236\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Micro and Nano Engineering","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590007224000236","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

氧化锌(ZnO)已成为大规模生产具有成本效益的光电设备的最有前途的候选材料之一。这主要是因为它可以通过相对简单的化学方法在各种基底上合成高质量的纳米结构。然而,无论选择哪种方法,生产 p 型氧化锌仍然是一个开放和有争议的问题。在这项工作中,通过两步水热生长合成法制备了不同锂掺杂浓度的氧化锌纳米结构,并利用场发射扫描电子显微镜(FE-SEM)、X 射线衍射(XRD)、拉曼光谱、扩展 X 射线吸收精细结构(EXAFS)光谱和温度依赖性光致发光(PL)进行了深入分析,以深入了解锂掺杂机制。研究结果表明,造成材料固有 n 型特性的原生缺陷与锂掺杂之间存在着强烈的相互作用。研究表明,这种相互作用阻碍了掺锂纳米棒向 p 型纳米结构的成功转化,因此在采用水热法时,必须确定将锂作为 Zn 替代物进行真正掺入所需的精确条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Investigation of hydrothermally-produced ZnO nanorods and the mechanisms of Li incorporation as a possible dopant

Zinc oxide (ZnO) has emerged as one of the most promising candidates for mass-producing cost-efficient optoelectronic devices. This is primarily because it can be synthesized in high-quality nanostructures on a wide range of substrates through relatively simple chemical methods. However, producing p-type ZnO, regardless of the chosen method, remains an open and controversial issue. In this work, Li-doped ZnO nanostructures of varying Li-cocnentration were produced via a two-step hydrothermal growth synthesis and an in-depth analysis based on with Field Emission Scanning Electron Microscopy (FE-SEM), X-ray diffraction (XRD), Raman Spectroscopy, Extended X-Ray Absorption Fine Structure (EXAFS) Spectroscopy, and temperature-dependent Photoluminescence (PL) was carried out in an effort to gain insights into the Li-incorporation mechanisms. The findings indicated a strong interplay between the native defects responsible for the inherent n-type character of the material and Li incorporation. It is suggested that this interplay hinders the successful conversion of the Li-doped nanorods into p-type nanostructures and that when employing the hydrothermal approach it is essential to identify the precise conditions necessary for genuine Li incorporation as a Zn substitutional.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Micro and Nano Engineering
Micro and Nano Engineering Engineering-Electrical and Electronic Engineering
CiteScore
3.30
自引率
0.00%
发文量
67
审稿时长
80 days
期刊最新文献
Laser-engraved holograms as entropy source for random number generators Developments in the design and microfabrication of photovoltaic retinal implants Enhanced plasma etching using nonlinear parameter evolution Low-frequency electromagnetic harvester for wind turbine vibrations From ghost to state-of-the-art process corrections – PEC enabled e-beam nanofabrication
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1