Junjue Wang , Ailong Ma , Zihang Chen , Zhuo Zheng , Yuting Wan , Liangpei Zhang , Yanfei Zhong
{"title":"EarthVQANet:用于遥感图像理解的多任务视觉问题解答","authors":"Junjue Wang , Ailong Ma , Zihang Chen , Zhuo Zheng , Yuting Wan , Liangpei Zhang , Yanfei Zhong","doi":"10.1016/j.isprsjprs.2024.05.001","DOIUrl":null,"url":null,"abstract":"<div><p>Monitoring and managing Earth’s surface resources is critical to human settlements, encompassing essential tasks such as city planning, disaster assessment, etc. To accurately recognize the categories and locations of geographical objects and reason about their spatial or semantic relations , we propose a multi-task framework named EarthVQANet, which jointly addresses segmentation and visual question answering (VQA) tasks. EarthVQANet contains a hierarchical pyramid network for segmentation and semantic-guided attention for VQA, in which the segmentation network aims to generate pixel-level visual features and high-level object semantics, and semantic-guided attention performs effective interactions between visual features and language features for relational modeling. For accurate relational reasoning, we design an adaptive numerical loss that incorporates distance sensitivity for counting questions and mines hard-easy samples for classification questions, balancing the optimization. Experimental results on the EarthVQA dataset (city planning for Wuhan, Changzhou, and Nanjing in China), RSVQA dataset (basic statistics for general objects), and FloodNet dataset (disaster assessment for Texas in America attacked by Hurricane Harvey) show that EarthVQANet surpasses 11 general and remote sensing VQA methods. EarthVQANet simultaneously achieves segmentation and reasoning, providing a solid benchmark for various remote sensing applications. Data is available at <span>http://rsidea.whu.edu.cn/EarthVQA.htm</span><svg><path></path></svg></p></div>","PeriodicalId":50269,"journal":{"name":"ISPRS Journal of Photogrammetry and Remote Sensing","volume":null,"pages":null},"PeriodicalIF":10.6000,"publicationDate":"2024-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"EarthVQANet: Multi-task visual question answering for remote sensing image understanding\",\"authors\":\"Junjue Wang , Ailong Ma , Zihang Chen , Zhuo Zheng , Yuting Wan , Liangpei Zhang , Yanfei Zhong\",\"doi\":\"10.1016/j.isprsjprs.2024.05.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Monitoring and managing Earth’s surface resources is critical to human settlements, encompassing essential tasks such as city planning, disaster assessment, etc. To accurately recognize the categories and locations of geographical objects and reason about their spatial or semantic relations , we propose a multi-task framework named EarthVQANet, which jointly addresses segmentation and visual question answering (VQA) tasks. EarthVQANet contains a hierarchical pyramid network for segmentation and semantic-guided attention for VQA, in which the segmentation network aims to generate pixel-level visual features and high-level object semantics, and semantic-guided attention performs effective interactions between visual features and language features for relational modeling. For accurate relational reasoning, we design an adaptive numerical loss that incorporates distance sensitivity for counting questions and mines hard-easy samples for classification questions, balancing the optimization. Experimental results on the EarthVQA dataset (city planning for Wuhan, Changzhou, and Nanjing in China), RSVQA dataset (basic statistics for general objects), and FloodNet dataset (disaster assessment for Texas in America attacked by Hurricane Harvey) show that EarthVQANet surpasses 11 general and remote sensing VQA methods. EarthVQANet simultaneously achieves segmentation and reasoning, providing a solid benchmark for various remote sensing applications. Data is available at <span>http://rsidea.whu.edu.cn/EarthVQA.htm</span><svg><path></path></svg></p></div>\",\"PeriodicalId\":50269,\"journal\":{\"name\":\"ISPRS Journal of Photogrammetry and Remote Sensing\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":10.6000,\"publicationDate\":\"2024-05-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ISPRS Journal of Photogrammetry and Remote Sensing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0924271624001990\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOGRAPHY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ISPRS Journal of Photogrammetry and Remote Sensing","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0924271624001990","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOGRAPHY, PHYSICAL","Score":null,"Total":0}
EarthVQANet: Multi-task visual question answering for remote sensing image understanding
Monitoring and managing Earth’s surface resources is critical to human settlements, encompassing essential tasks such as city planning, disaster assessment, etc. To accurately recognize the categories and locations of geographical objects and reason about their spatial or semantic relations , we propose a multi-task framework named EarthVQANet, which jointly addresses segmentation and visual question answering (VQA) tasks. EarthVQANet contains a hierarchical pyramid network for segmentation and semantic-guided attention for VQA, in which the segmentation network aims to generate pixel-level visual features and high-level object semantics, and semantic-guided attention performs effective interactions between visual features and language features for relational modeling. For accurate relational reasoning, we design an adaptive numerical loss that incorporates distance sensitivity for counting questions and mines hard-easy samples for classification questions, balancing the optimization. Experimental results on the EarthVQA dataset (city planning for Wuhan, Changzhou, and Nanjing in China), RSVQA dataset (basic statistics for general objects), and FloodNet dataset (disaster assessment for Texas in America attacked by Hurricane Harvey) show that EarthVQANet surpasses 11 general and remote sensing VQA methods. EarthVQANet simultaneously achieves segmentation and reasoning, providing a solid benchmark for various remote sensing applications. Data is available at http://rsidea.whu.edu.cn/EarthVQA.htm
期刊介绍:
The ISPRS Journal of Photogrammetry and Remote Sensing (P&RS) serves as the official journal of the International Society for Photogrammetry and Remote Sensing (ISPRS). It acts as a platform for scientists and professionals worldwide who are involved in various disciplines that utilize photogrammetry, remote sensing, spatial information systems, computer vision, and related fields. The journal aims to facilitate communication and dissemination of advancements in these disciplines, while also acting as a comprehensive source of reference and archive.
P&RS endeavors to publish high-quality, peer-reviewed research papers that are preferably original and have not been published before. These papers can cover scientific/research, technological development, or application/practical aspects. Additionally, the journal welcomes papers that are based on presentations from ISPRS meetings, as long as they are considered significant contributions to the aforementioned fields.
In particular, P&RS encourages the submission of papers that are of broad scientific interest, showcase innovative applications (especially in emerging fields), have an interdisciplinary focus, discuss topics that have received limited attention in P&RS or related journals, or explore new directions in scientific or professional realms. It is preferred that theoretical papers include practical applications, while papers focusing on systems and applications should include a theoretical background.