RHDLPP:用于激光产生的等离子体的多组辐射流体力学代码

IF 7.2 2区 物理与天体物理 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Computer Physics Communications Pub Date : 2024-05-11 DOI:10.1016/j.cpc.2024.109242
Qi Min , Ziyang Xu , Siqi He , Haidong Lu , Xingbang Liu , Ruizi Shen , Yanhong Wu , Qikun Pan , Chongxiao Zhao , Fei Chen , Maogen Su , Chenzhong Dong
{"title":"RHDLPP:用于激光产生的等离子体的多组辐射流体力学代码","authors":"Qi Min ,&nbsp;Ziyang Xu ,&nbsp;Siqi He ,&nbsp;Haidong Lu ,&nbsp;Xingbang Liu ,&nbsp;Ruizi Shen ,&nbsp;Yanhong Wu ,&nbsp;Qikun Pan ,&nbsp;Chongxiao Zhao ,&nbsp;Fei Chen ,&nbsp;Maogen Su ,&nbsp;Chenzhong Dong","doi":"10.1016/j.cpc.2024.109242","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we introduce the RHDLPP, a flux-limited multigroup radiation hydrodynamics numerical code designed for simulating laser-produced plasmas in diverse environments. The code bifurcates into two packages: RHDLPP-LTP for low-temperature plasmas generated by moderate-intensity nanosecond lasers, and RHDLPP-HTP for high-temperature, high-density plasmas formed by high-intensity laser pulses. The core radiation hydrodynamic equations are resolved in the Eulerian frame, employing an operator-split method. This method decomposes the solution into two substeps: first, the explicit resolution of the hyperbolic subsystems integrating radiation and fluid dynamics; second, the implicit treatment of the parabolic part comprising stiff radiation diffusion, heat conduction, and energy exchange. Laser propagation and energy deposition are modeled through a hybrid approach, combining geometrical-optics ray-tracing in sub-critical plasma regions with a one-dimensional solution of the Helmholtz wave equation in super-critical areas. The thermodynamic states are ascertained using an equation of state, based on either the real gas approximation or the quotidian equation of state (QEOS). For ionization calculations, the code employs a steady-state collisional-radiation (CR) model using the screened-hydrogenic approximation. Additionally, RHDLPP includes RHDLPP-SpeIma3D, a three-dimensional spectral simulation post-processing module, for generating both temporally-spatially resolved and time-integrated spectra and imaging, facilitating direct comparisons with experimental data. The paper showcases a series of verification tests to establish the code's accuracy and efficiency, followed by application cases, including simulations of laser-produced aluminium (Al) plasmas, pre-pulse-induced target deformation of tin (Sn) microdroplets relevant to extreme ultraviolet lithography light sources, and varied imaging and spectroscopic simulations. These simulations highlight RHDLPP's effectiveness and applicability in fields such as laser-induced breakdown spectroscopy, extreme ultraviolet lithography sources, and high-energy-density physics.</p></div>","PeriodicalId":285,"journal":{"name":"Computer Physics Communications","volume":null,"pages":null},"PeriodicalIF":7.2000,"publicationDate":"2024-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"RHDLPP: A multigroup radiation hydrodynamics code for laser-produced plasmas\",\"authors\":\"Qi Min ,&nbsp;Ziyang Xu ,&nbsp;Siqi He ,&nbsp;Haidong Lu ,&nbsp;Xingbang Liu ,&nbsp;Ruizi Shen ,&nbsp;Yanhong Wu ,&nbsp;Qikun Pan ,&nbsp;Chongxiao Zhao ,&nbsp;Fei Chen ,&nbsp;Maogen Su ,&nbsp;Chenzhong Dong\",\"doi\":\"10.1016/j.cpc.2024.109242\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, we introduce the RHDLPP, a flux-limited multigroup radiation hydrodynamics numerical code designed for simulating laser-produced plasmas in diverse environments. The code bifurcates into two packages: RHDLPP-LTP for low-temperature plasmas generated by moderate-intensity nanosecond lasers, and RHDLPP-HTP for high-temperature, high-density plasmas formed by high-intensity laser pulses. The core radiation hydrodynamic equations are resolved in the Eulerian frame, employing an operator-split method. This method decomposes the solution into two substeps: first, the explicit resolution of the hyperbolic subsystems integrating radiation and fluid dynamics; second, the implicit treatment of the parabolic part comprising stiff radiation diffusion, heat conduction, and energy exchange. Laser propagation and energy deposition are modeled through a hybrid approach, combining geometrical-optics ray-tracing in sub-critical plasma regions with a one-dimensional solution of the Helmholtz wave equation in super-critical areas. The thermodynamic states are ascertained using an equation of state, based on either the real gas approximation or the quotidian equation of state (QEOS). For ionization calculations, the code employs a steady-state collisional-radiation (CR) model using the screened-hydrogenic approximation. Additionally, RHDLPP includes RHDLPP-SpeIma3D, a three-dimensional spectral simulation post-processing module, for generating both temporally-spatially resolved and time-integrated spectra and imaging, facilitating direct comparisons with experimental data. The paper showcases a series of verification tests to establish the code's accuracy and efficiency, followed by application cases, including simulations of laser-produced aluminium (Al) plasmas, pre-pulse-induced target deformation of tin (Sn) microdroplets relevant to extreme ultraviolet lithography light sources, and varied imaging and spectroscopic simulations. These simulations highlight RHDLPP's effectiveness and applicability in fields such as laser-induced breakdown spectroscopy, extreme ultraviolet lithography sources, and high-energy-density physics.</p></div>\",\"PeriodicalId\":285,\"journal\":{\"name\":\"Computer Physics Communications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":7.2000,\"publicationDate\":\"2024-05-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer Physics Communications\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0010465524001656\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Physics Communications","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0010465524001656","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们介绍了 RHDLPP,这是一种通量限制多组辐射流体力学数值代码,设计用于模拟各种环境中的激光产生的等离子体。该代码分为两个软件包:RHDLPP-LTP 用于中等强度纳秒激光产生的低温等离子体,RHDLPP-HTP 用于高强度激光脉冲形成的高温、高密度等离子体。核心辐射流体力学方程在欧拉框架下采用算子拆分法求解。该方法将求解分解为两个子步骤:第一,显式解析集成辐射和流体动力学的双曲子系统;第二,隐式处理抛物线部分,包括刚性辐射扩散、热传导和能量交换。激光传播和能量沉积是通过一种混合方法建模的,该方法结合了亚临界等离子体区域的几何光学射线追踪和超临界区域的亥姆霍兹波方程一维解法。热力学状态通过状态方程确定,该方程基于真实气体近似或商数状态方程(QEOS)。在电离计算中,代码采用了使用屏蔽氢近似的稳态碰撞辐射(CR)模型。此外,RHDLPP 还包括三维光谱模拟后处理模块 RHDLPP-SpeIma3D,用于生成时间空间分辨率和时间积分光谱及成像,便于与实验数据进行直接比较。论文展示了一系列验证测试,以确定代码的准确性和效率,随后是应用案例,包括激光产生的铝(Al)等离子体的模拟、与极紫外光刻光源相关的锡(Sn)微液滴的预脉冲诱导目标变形,以及各种成像和光谱模拟。这些模拟突出了 RHDLPP 在激光诱导击穿光谱学、极紫外光刻光源和高能量密度物理学等领域的有效性和适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
RHDLPP: A multigroup radiation hydrodynamics code for laser-produced plasmas

In this paper, we introduce the RHDLPP, a flux-limited multigroup radiation hydrodynamics numerical code designed for simulating laser-produced plasmas in diverse environments. The code bifurcates into two packages: RHDLPP-LTP for low-temperature plasmas generated by moderate-intensity nanosecond lasers, and RHDLPP-HTP for high-temperature, high-density plasmas formed by high-intensity laser pulses. The core radiation hydrodynamic equations are resolved in the Eulerian frame, employing an operator-split method. This method decomposes the solution into two substeps: first, the explicit resolution of the hyperbolic subsystems integrating radiation and fluid dynamics; second, the implicit treatment of the parabolic part comprising stiff radiation diffusion, heat conduction, and energy exchange. Laser propagation and energy deposition are modeled through a hybrid approach, combining geometrical-optics ray-tracing in sub-critical plasma regions with a one-dimensional solution of the Helmholtz wave equation in super-critical areas. The thermodynamic states are ascertained using an equation of state, based on either the real gas approximation or the quotidian equation of state (QEOS). For ionization calculations, the code employs a steady-state collisional-radiation (CR) model using the screened-hydrogenic approximation. Additionally, RHDLPP includes RHDLPP-SpeIma3D, a three-dimensional spectral simulation post-processing module, for generating both temporally-spatially resolved and time-integrated spectra and imaging, facilitating direct comparisons with experimental data. The paper showcases a series of verification tests to establish the code's accuracy and efficiency, followed by application cases, including simulations of laser-produced aluminium (Al) plasmas, pre-pulse-induced target deformation of tin (Sn) microdroplets relevant to extreme ultraviolet lithography light sources, and varied imaging and spectroscopic simulations. These simulations highlight RHDLPP's effectiveness and applicability in fields such as laser-induced breakdown spectroscopy, extreme ultraviolet lithography sources, and high-energy-density physics.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computer Physics Communications
Computer Physics Communications 物理-计算机:跨学科应用
CiteScore
12.10
自引率
3.20%
发文量
287
审稿时长
5.3 months
期刊介绍: The focus of CPC is on contemporary computational methods and techniques and their implementation, the effectiveness of which will normally be evidenced by the author(s) within the context of a substantive problem in physics. Within this setting CPC publishes two types of paper. Computer Programs in Physics (CPiP) These papers describe significant computer programs to be archived in the CPC Program Library which is held in the Mendeley Data repository. The submitted software must be covered by an approved open source licence. Papers and associated computer programs that address a problem of contemporary interest in physics that cannot be solved by current software are particularly encouraged. Computational Physics Papers (CP) These are research papers in, but are not limited to, the following themes across computational physics and related disciplines. mathematical and numerical methods and algorithms; computational models including those associated with the design, control and analysis of experiments; and algebraic computation. Each will normally include software implementation and performance details. The software implementation should, ideally, be available via GitHub, Zenodo or an institutional repository.In addition, research papers on the impact of advanced computer architecture and special purpose computers on computing in the physical sciences and software topics related to, and of importance in, the physical sciences may be considered.
期刊最新文献
A novel model for direct numerical simulation of suspension dynamics with arbitrarily shaped convex particles Editorial Board Study α decay and proton emission based on data-driven symbolic regression Efficient determination of free energies of non-ideal solid solutions via hybrid Monte Carlo simulations 1D drift-kinetic numerical model based on semi-implicit particle-in-cell method
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1