基于带限 SRBF 的山区重力场建模

IF 3.9 2区 地球科学 Q1 GEOCHEMISTRY & GEOPHYSICS Journal of Geodesy Pub Date : 2024-05-20 DOI:10.1007/s00190-024-01852-3
Zhiwei Ma
{"title":"基于带限 SRBF 的山区重力场建模","authors":"Zhiwei Ma","doi":"10.1007/s00190-024-01852-3","DOIUrl":null,"url":null,"abstract":"<p>In this study, a novel two-scale spherical radial basis function (SRBF) modeling method is proposed for regional gravity field determination. First, satellite-only global gravity field models (GGMs) are combined with airborne gravity data at medium-frequency bands, and a series of combined gravity field models based on band-limited SRBFs are established for the mountainous areas of California and Oregon. The combined gravity field models are then compared with the airborne-only gravity field models. The results show that the combined models exhibit standard deviation (STD) values of 0.106–0.120 m in terms of geoid height differences w.r.t. the global positioning system (GPS)/leveling data, while the corresponding airborne-only models yield STD values of 0.126–0.131 m. The STD values of the combined models are reduced by 0.9–2.0 cm, which implies a potential benefit for the medium-frequency gravity field modeling by combining GGM and airborne gravity data. Second, after removing the low-frequency and medium-frequency gravity field signals as well as the residual terrain model signals from gravity data, a second SRBF modeling process is implemented using multisource residual gravity data. Subsequently, a high-resolution two-scale SRBF gravity field model is constructed for the mountainous areas of California and Oregon. The results indicate that the STD of geoid height differences for the two-scale SRBF model w.r.t. the GPS/leveling data is 0.098 m, with reductions of 3.0–6.2 cm compared to the models based on the single-scale SRBF modeling method. These findings indicate the effectiveness of the two-scale SRBF modeling method for refining the regional gravity field model in complex areas.</p>","PeriodicalId":54822,"journal":{"name":"Journal of Geodesy","volume":"49 1","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2024-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Gravity field modeling in mountainous areas based on band-limited SRBFs\",\"authors\":\"Zhiwei Ma\",\"doi\":\"10.1007/s00190-024-01852-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this study, a novel two-scale spherical radial basis function (SRBF) modeling method is proposed for regional gravity field determination. First, satellite-only global gravity field models (GGMs) are combined with airborne gravity data at medium-frequency bands, and a series of combined gravity field models based on band-limited SRBFs are established for the mountainous areas of California and Oregon. The combined gravity field models are then compared with the airborne-only gravity field models. The results show that the combined models exhibit standard deviation (STD) values of 0.106–0.120 m in terms of geoid height differences w.r.t. the global positioning system (GPS)/leveling data, while the corresponding airborne-only models yield STD values of 0.126–0.131 m. The STD values of the combined models are reduced by 0.9–2.0 cm, which implies a potential benefit for the medium-frequency gravity field modeling by combining GGM and airborne gravity data. Second, after removing the low-frequency and medium-frequency gravity field signals as well as the residual terrain model signals from gravity data, a second SRBF modeling process is implemented using multisource residual gravity data. Subsequently, a high-resolution two-scale SRBF gravity field model is constructed for the mountainous areas of California and Oregon. The results indicate that the STD of geoid height differences for the two-scale SRBF model w.r.t. the GPS/leveling data is 0.098 m, with reductions of 3.0–6.2 cm compared to the models based on the single-scale SRBF modeling method. These findings indicate the effectiveness of the two-scale SRBF modeling method for refining the regional gravity field model in complex areas.</p>\",\"PeriodicalId\":54822,\"journal\":{\"name\":\"Journal of Geodesy\",\"volume\":\"49 1\",\"pages\":\"\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-05-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Geodesy\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1007/s00190-024-01852-3\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geodesy","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1007/s00190-024-01852-3","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

本研究提出了一种用于区域重力场测定的新型双尺度球面径向基函数(SRBF)建模方法。首先,将纯卫星全球重力场模型(GGMs)与中频段机载重力数据相结合,为加利福尼亚州和俄勒冈州的山区建立了一系列基于频带限制 SRBFs 的组合重力场模型。然后将组合重力场模型与纯机载重力场模型进行比较。结果表明,就与全球定位系统(GPS)/水准测量数据的大地水准面高度差而言,组合模型的标准偏差(STD)值为 0.106-0.120 米,而相应的纯机载模型的 STD 值为 0.126-0.131 米。其次,在移除重力数据中的低频和中频重力场信号以及残余地形模型信号后,利用多源残余重力数据实施第二次 SRBF 建模过程。随后,为加利福尼亚州和俄勒冈州的山区构建了一个高分辨率的双尺度 SRBF 重力场模型。结果表明,与 GPS/水准测量数据相比,双尺度 SRBF 模型的大地水准面高度差 STD 为 0.098 米,与基于单尺度 SRBF 建模方法的模型相比,减少了 3.0-6.2 厘米。这些结果表明,双尺度 SRBF 建模方法在完善复杂地区的区域重力场模型方面非常有效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Gravity field modeling in mountainous areas based on band-limited SRBFs

In this study, a novel two-scale spherical radial basis function (SRBF) modeling method is proposed for regional gravity field determination. First, satellite-only global gravity field models (GGMs) are combined with airborne gravity data at medium-frequency bands, and a series of combined gravity field models based on band-limited SRBFs are established for the mountainous areas of California and Oregon. The combined gravity field models are then compared with the airborne-only gravity field models. The results show that the combined models exhibit standard deviation (STD) values of 0.106–0.120 m in terms of geoid height differences w.r.t. the global positioning system (GPS)/leveling data, while the corresponding airborne-only models yield STD values of 0.126–0.131 m. The STD values of the combined models are reduced by 0.9–2.0 cm, which implies a potential benefit for the medium-frequency gravity field modeling by combining GGM and airborne gravity data. Second, after removing the low-frequency and medium-frequency gravity field signals as well as the residual terrain model signals from gravity data, a second SRBF modeling process is implemented using multisource residual gravity data. Subsequently, a high-resolution two-scale SRBF gravity field model is constructed for the mountainous areas of California and Oregon. The results indicate that the STD of geoid height differences for the two-scale SRBF model w.r.t. the GPS/leveling data is 0.098 m, with reductions of 3.0–6.2 cm compared to the models based on the single-scale SRBF modeling method. These findings indicate the effectiveness of the two-scale SRBF modeling method for refining the regional gravity field model in complex areas.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Geodesy
Journal of Geodesy 地学-地球化学与地球物理
CiteScore
8.60
自引率
9.10%
发文量
85
审稿时长
9 months
期刊介绍: The Journal of Geodesy is an international journal concerned with the study of scientific problems of geodesy and related interdisciplinary sciences. Peer-reviewed papers are published on theoretical or modeling studies, and on results of experiments and interpretations. Besides original research papers, the journal includes commissioned review papers on topical subjects and special issues arising from chosen scientific symposia or workshops. The journal covers the whole range of geodetic science and reports on theoretical and applied studies in research areas such as: -Positioning -Reference frame -Geodetic networks -Modeling and quality control -Space geodesy -Remote sensing -Gravity fields -Geodynamics
期刊最新文献
Flatness constraints in the estimation of GNSS satellite antenna phase center offsets and variations A processing strategy for handling latency of PPP-RTK corrections Gap filling between GRACE and GRACE-FO missions: assessment of interpolation techniques Modified Bayesian method for simultaneously imaging fault geometry and slip distribution with reduced uncertainty, applied to 2017 Mw 7.3 Sarpol-e Zahab (Iran) earthquake Global 3D ionospheric shape function modeling with kriging
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1