{"title":"分数傅里叶变换的稀疏近似值","authors":"Fang Yang, Jiecheng Chen, Tao Qian, Jiman Zhao","doi":"10.1007/s10444-024-10127-6","DOIUrl":null,"url":null,"abstract":"<div><p>The paper promotes a new sparse approximation for fractional Fourier transform, which is based on adaptive Fourier decomposition in Hardy-Hilbert space on the upper half-plane. Under this methodology, the local polynomial Fourier transform characterization of Hardy space is established, which is an analog of the Paley-Wiener theorem. Meanwhile, a sparse fractional Fourier series for chirp <span>\\( L^2 \\)</span> function is proposed, which is based on adaptive Fourier decomposition in Hardy-Hilbert space on the unit disk. Besides the establishment of the theoretical foundation, the proposed approximation provides a sparse solution for a forced Schr<span>\\(\\ddot{\\textrm{o}}\\)</span>dinger equations with a harmonic oscillator.</p></div>","PeriodicalId":50869,"journal":{"name":"Advances in Computational Mathematics","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2024-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A sparse approximation for fractional Fourier transform\",\"authors\":\"Fang Yang, Jiecheng Chen, Tao Qian, Jiman Zhao\",\"doi\":\"10.1007/s10444-024-10127-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The paper promotes a new sparse approximation for fractional Fourier transform, which is based on adaptive Fourier decomposition in Hardy-Hilbert space on the upper half-plane. Under this methodology, the local polynomial Fourier transform characterization of Hardy space is established, which is an analog of the Paley-Wiener theorem. Meanwhile, a sparse fractional Fourier series for chirp <span>\\\\( L^2 \\\\)</span> function is proposed, which is based on adaptive Fourier decomposition in Hardy-Hilbert space on the unit disk. Besides the establishment of the theoretical foundation, the proposed approximation provides a sparse solution for a forced Schr<span>\\\\(\\\\ddot{\\\\textrm{o}}\\\\)</span>dinger equations with a harmonic oscillator.</p></div>\",\"PeriodicalId\":50869,\"journal\":{\"name\":\"Advances in Computational Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-05-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Computational Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10444-024-10127-6\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Computational Mathematics","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10444-024-10127-6","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
A sparse approximation for fractional Fourier transform
The paper promotes a new sparse approximation for fractional Fourier transform, which is based on adaptive Fourier decomposition in Hardy-Hilbert space on the upper half-plane. Under this methodology, the local polynomial Fourier transform characterization of Hardy space is established, which is an analog of the Paley-Wiener theorem. Meanwhile, a sparse fractional Fourier series for chirp \( L^2 \) function is proposed, which is based on adaptive Fourier decomposition in Hardy-Hilbert space on the unit disk. Besides the establishment of the theoretical foundation, the proposed approximation provides a sparse solution for a forced Schr\(\ddot{\textrm{o}}\)dinger equations with a harmonic oscillator.
期刊介绍:
Advances in Computational Mathematics publishes high quality, accessible and original articles at the forefront of computational and applied mathematics, with a clear potential for impact across the sciences. The journal emphasizes three core areas: approximation theory and computational geometry; numerical analysis, modelling and simulation; imaging, signal processing and data analysis.
This journal welcomes papers that are accessible to a broad audience in the mathematical sciences and that show either an advance in computational methodology or a novel scientific application area, or both. Methods papers should rely on rigorous analysis and/or convincing numerical studies.