Volha A. Golubeva , Anindhya Sundar Das , Charles P. Rabolli , Lisa E. Dorn , Jop H. van Berlo , Federica Accornero
{"title":"YTHDF1 是维持心脏稳态的关键。","authors":"Volha A. Golubeva , Anindhya Sundar Das , Charles P. Rabolli , Lisa E. Dorn , Jop H. van Berlo , Federica Accornero","doi":"10.1016/j.yjmcc.2024.05.008","DOIUrl":null,"url":null,"abstract":"<div><p>The YTH-domain family (YTHDF) of RNA binding proteins can control gene expression at the post-transcriptional level by regulating mRNAs with N<sup>6</sup>-methyladenosine (m<sup>6</sup>A) modifications. Despite the established importance of m<sup>6</sup>A in the heart, the cardiac role of specific m<sup>6</sup>A-binding proteins remains unclear. Here, we characterized the function of YTHDF1 in cardiomyocytes using a newly generated cardiac-restricted mouse model. Deletion of YTHDF1 in adult cardiomyocytes led to hypertrophy, fibrosis, and dysfunction. Using mass spectrometry, we identified the necessity of YTHDF1 for the expression of cardiomyocyte membrane raft proteins. Specifically, YTHDF1 bound to m<sup>6</sup>A-modified Caveolin 1 (Cav1) mRNA and favored its translation. We further demonstrated that YTHDF1 regulates downstream ERK signaling. Altogether, our findings highlight a novel role for YTHDF1 as a post-transcriptional regulator of caveolar proteins which is necessary for the maintenance of cardiac function.</p></div>","PeriodicalId":16402,"journal":{"name":"Journal of molecular and cellular cardiology","volume":"193 ","pages":"Pages 25-35"},"PeriodicalIF":4.9000,"publicationDate":"2024-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"YTHDF1 is pivotal for maintenance of cardiac homeostasis\",\"authors\":\"Volha A. Golubeva , Anindhya Sundar Das , Charles P. Rabolli , Lisa E. Dorn , Jop H. van Berlo , Federica Accornero\",\"doi\":\"10.1016/j.yjmcc.2024.05.008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The YTH-domain family (YTHDF) of RNA binding proteins can control gene expression at the post-transcriptional level by regulating mRNAs with N<sup>6</sup>-methyladenosine (m<sup>6</sup>A) modifications. Despite the established importance of m<sup>6</sup>A in the heart, the cardiac role of specific m<sup>6</sup>A-binding proteins remains unclear. Here, we characterized the function of YTHDF1 in cardiomyocytes using a newly generated cardiac-restricted mouse model. Deletion of YTHDF1 in adult cardiomyocytes led to hypertrophy, fibrosis, and dysfunction. Using mass spectrometry, we identified the necessity of YTHDF1 for the expression of cardiomyocyte membrane raft proteins. Specifically, YTHDF1 bound to m<sup>6</sup>A-modified Caveolin 1 (Cav1) mRNA and favored its translation. We further demonstrated that YTHDF1 regulates downstream ERK signaling. Altogether, our findings highlight a novel role for YTHDF1 as a post-transcriptional regulator of caveolar proteins which is necessary for the maintenance of cardiac function.</p></div>\",\"PeriodicalId\":16402,\"journal\":{\"name\":\"Journal of molecular and cellular cardiology\",\"volume\":\"193 \",\"pages\":\"Pages 25-35\"},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2024-05-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of molecular and cellular cardiology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022282824000804\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CARDIAC & CARDIOVASCULAR SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of molecular and cellular cardiology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022282824000804","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
YTHDF1 is pivotal for maintenance of cardiac homeostasis
The YTH-domain family (YTHDF) of RNA binding proteins can control gene expression at the post-transcriptional level by regulating mRNAs with N6-methyladenosine (m6A) modifications. Despite the established importance of m6A in the heart, the cardiac role of specific m6A-binding proteins remains unclear. Here, we characterized the function of YTHDF1 in cardiomyocytes using a newly generated cardiac-restricted mouse model. Deletion of YTHDF1 in adult cardiomyocytes led to hypertrophy, fibrosis, and dysfunction. Using mass spectrometry, we identified the necessity of YTHDF1 for the expression of cardiomyocyte membrane raft proteins. Specifically, YTHDF1 bound to m6A-modified Caveolin 1 (Cav1) mRNA and favored its translation. We further demonstrated that YTHDF1 regulates downstream ERK signaling. Altogether, our findings highlight a novel role for YTHDF1 as a post-transcriptional regulator of caveolar proteins which is necessary for the maintenance of cardiac function.
期刊介绍:
The Journal of Molecular and Cellular Cardiology publishes work advancing knowledge of the mechanisms responsible for both normal and diseased cardiovascular function. To this end papers are published in all relevant areas. These include (but are not limited to): structural biology; genetics; proteomics; morphology; stem cells; molecular biology; metabolism; biophysics; bioengineering; computational modeling and systems analysis; electrophysiology; pharmacology and physiology. Papers are encouraged with both basic and translational approaches. The journal is directed not only to basic scientists but also to clinical cardiologists who wish to follow the rapidly advancing frontiers of basic knowledge of the heart and circulation.