使用 VGG16 和 VGG19 头骨放射摄影对印尼成人法医性别进行分类:初步研究。

IF 1.4 4区 医学 Q3 DENTISTRY, ORAL SURGERY & MEDICINE Acta Odontologica Scandinavica Pub Date : 2024-05-21 DOI:10.2340/aos.v83.40476
Vitria Wuri Handayani, Ahmad Yudianto, Mieke Sylvia M A R, Riries Rulaningtyas, Muhammad Rasyad Caesarardhi
{"title":"使用 VGG16 和 VGG19 头骨放射摄影对印尼成人法医性别进行分类:初步研究。","authors":"Vitria Wuri Handayani, Ahmad Yudianto, Mieke Sylvia M A R, Riries Rulaningtyas, Muhammad Rasyad Caesarardhi","doi":"10.2340/aos.v83.40476","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The use of cephalometric pictures in dental radiology is widely acknowledged as a dependable technique for determining the gender of an individual. The Visual Geometry Group 16 (VGG16) and Visual Geometry Group 19 (VGG19) algorithms have been proven to be effective in image classification.</p><p><strong>Objectives: </strong>To acknowledge the importance of comprehending the complex procedures associated with the generation and adjustment of inputs in order to obtain precise outcomes using the VGG16 and VGG19 algorithms.</p><p><strong>Material and method: </strong>The current work utilised a dataset including 274 cephalometric radiographic pictures of adult Indonesians' oral health records to construct a gender classification model using the VGG16 and VGG19 architectures using Python.</p><p><strong>Result: </strong>The VGG16 model has a gender identification accuracy of 93% for females and 73% for males, resulting in an average accuracy of 89% across both genders. In the context of gender identification, the VGG19 model has been found to achieve an accuracy of 0.95% for females and 0.80% for men, resulting in an overall accuracy of 0.93% when considering both genders.</p><p><strong>Conclusion: </strong>The application of VGG16 and VGG19 models has played a significant role in identifying gender based on the study of cephalometric radiography. This application has demonstrated the exceptional effectiveness of both models in accurately predicting the gender of Indonesian adults.</p>","PeriodicalId":7313,"journal":{"name":"Acta Odontologica Scandinavica","volume":"83 ","pages":"308-316"},"PeriodicalIF":1.4000,"publicationDate":"2024-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11302625/pdf/","citationCount":"0","resultStr":"{\"title\":\"Classification of Indonesian adult forensic gender using cephalometric radiography with VGG16 and VGG19: a Preliminary research.\",\"authors\":\"Vitria Wuri Handayani, Ahmad Yudianto, Mieke Sylvia M A R, Riries Rulaningtyas, Muhammad Rasyad Caesarardhi\",\"doi\":\"10.2340/aos.v83.40476\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>The use of cephalometric pictures in dental radiology is widely acknowledged as a dependable technique for determining the gender of an individual. The Visual Geometry Group 16 (VGG16) and Visual Geometry Group 19 (VGG19) algorithms have been proven to be effective in image classification.</p><p><strong>Objectives: </strong>To acknowledge the importance of comprehending the complex procedures associated with the generation and adjustment of inputs in order to obtain precise outcomes using the VGG16 and VGG19 algorithms.</p><p><strong>Material and method: </strong>The current work utilised a dataset including 274 cephalometric radiographic pictures of adult Indonesians' oral health records to construct a gender classification model using the VGG16 and VGG19 architectures using Python.</p><p><strong>Result: </strong>The VGG16 model has a gender identification accuracy of 93% for females and 73% for males, resulting in an average accuracy of 89% across both genders. In the context of gender identification, the VGG19 model has been found to achieve an accuracy of 0.95% for females and 0.80% for men, resulting in an overall accuracy of 0.93% when considering both genders.</p><p><strong>Conclusion: </strong>The application of VGG16 and VGG19 models has played a significant role in identifying gender based on the study of cephalometric radiography. This application has demonstrated the exceptional effectiveness of both models in accurately predicting the gender of Indonesian adults.</p>\",\"PeriodicalId\":7313,\"journal\":{\"name\":\"Acta Odontologica Scandinavica\",\"volume\":\"83 \",\"pages\":\"308-316\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-05-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11302625/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Odontologica Scandinavica\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.2340/aos.v83.40476\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"DENTISTRY, ORAL SURGERY & MEDICINE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Odontologica Scandinavica","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2340/aos.v83.40476","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"DENTISTRY, ORAL SURGERY & MEDICINE","Score":null,"Total":0}
引用次数: 0

摘要

背景:在牙科放射学中使用头颅测量图片被公认为是确定个人性别的可靠技术。视觉几何组 16(VGG16)和视觉几何组 19(VGG19)算法已被证明在图像分类中非常有效:认识到理解与生成和调整输入相关的复杂程序的重要性,以便使用 VGG16 和 VGG19 算法获得精确的结果:目前的研究利用了一个数据集,其中包括印尼成年人口腔健康记录中的274张头颅X光照片,使用Python构建了一个使用VGG16和VGG19架构的性别分类模型:结果:VGG16 模型对女性和男性的性别识别准确率分别为 93% 和 73%,两性的平均准确率为 89%。在性别识别方面,VGG19 模型对女性的识别准确率为 0.95%,对男性的识别准确率为 0.80%,考虑到男女两性,总体准确率为 0.93%:结论:VGG16 和 VGG19 模型的应用在基于头颅放射摄影研究的性别识别中发挥了重要作用。这一应用证明了这两个模型在准确预测印尼成年人性别方面的卓越功效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Classification of Indonesian adult forensic gender using cephalometric radiography with VGG16 and VGG19: a Preliminary research.

Background: The use of cephalometric pictures in dental radiology is widely acknowledged as a dependable technique for determining the gender of an individual. The Visual Geometry Group 16 (VGG16) and Visual Geometry Group 19 (VGG19) algorithms have been proven to be effective in image classification.

Objectives: To acknowledge the importance of comprehending the complex procedures associated with the generation and adjustment of inputs in order to obtain precise outcomes using the VGG16 and VGG19 algorithms.

Material and method: The current work utilised a dataset including 274 cephalometric radiographic pictures of adult Indonesians' oral health records to construct a gender classification model using the VGG16 and VGG19 architectures using Python.

Result: The VGG16 model has a gender identification accuracy of 93% for females and 73% for males, resulting in an average accuracy of 89% across both genders. In the context of gender identification, the VGG19 model has been found to achieve an accuracy of 0.95% for females and 0.80% for men, resulting in an overall accuracy of 0.93% when considering both genders.

Conclusion: The application of VGG16 and VGG19 models has played a significant role in identifying gender based on the study of cephalometric radiography. This application has demonstrated the exceptional effectiveness of both models in accurately predicting the gender of Indonesian adults.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Acta Odontologica Scandinavica
Acta Odontologica Scandinavica 医学-牙科与口腔外科
CiteScore
4.00
自引率
5.00%
发文量
69
审稿时长
6-12 weeks
期刊介绍: Acta Odontologica Scandinavica publishes papers conveying new knowledge within all areas of oral health and disease sciences.
期刊最新文献
Oral lesions and disorders and their prevalence arising from the use of illicit drugs in a prison population. Patient-reported outcomes of esthetics, function and oral hygiene with single dental implants 10-15 years after placement: a cross-sectional study. Association of socio-demographic characteristics, comorbidities, lifestyle habits, and saliva parameters with dental caries in adults with obesity. Preventive measures and perceived challenges in delivering oral health care for elderly patients: a survey of dental hygienists in Norway. Diagnosis of approximal caries in children with convolutional neural networks based detection algorithms on radiographs: A pilot study.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1