{"title":"瓜氨酸通过调节 RAB3C 促进肺癌细胞的糖酵解、增殖和转移。","authors":"Qingjun Meng, Yanguang Li, Zhen Sun, Junfeng Liu","doi":"10.1002/tox.24326","DOIUrl":null,"url":null,"abstract":"<p>Lung cancer (LC) is one of the major malignant diseases threatening human health. The study aimed to identify the effect of citrulline on the malignant phenotype of LC cells and to further disclose the potential molecular mechanism of citrulline in regulating the development of LC, providing a novel molecular biological basis for the clinical treatment of LC. The effects of citrulline on the viability, proliferation, migration, and invasion of LC cells (A549, H1299) were validated by CCK-8, colony formation, EdU, and transwell assays. The cell glycolysis was assessed via determining the glucose uptake, lactate production, ATP levels, extracellular acidification rate (ECAR), and oxygen consumption rate (OCR). RNA-seq and molecular docking were performed to screen for citrulline-binding target proteins. Western blotting experiments were conducted to examine the expression of related signaling pathway molecules. In addition, the impacts of citrulline on LC growth in vivo were investigated by constructing mouse models. Citrulline augmented the viability of LC cells in a concentration and time-dependent manner. The proliferation, migration, invasion, glycolysis, and EMT processes of LC cells were substantially enhanced after citrulline treatment. Bioinformatics analysis indicated that citrulline could bind to RAB3C protein. Western blotting results indicated that citrulline activated the IL-6/STAT3 pathway by binding to RAB3C. In addition, animal experiments disclosed that citrulline promoted tumor growth in mice. Citrulline accelerated the glycolysis and activated the IL6/STAT3 pathway through the RAB3C protein, consequently facilitating the development of LC.</p>","PeriodicalId":11756,"journal":{"name":"Environmental Toxicology","volume":"39 9","pages":"4372-4384"},"PeriodicalIF":4.4000,"publicationDate":"2024-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Citrulline facilitates the glycolysis, proliferation, and metastasis of lung cancer cells by regulating RAB3C\",\"authors\":\"Qingjun Meng, Yanguang Li, Zhen Sun, Junfeng Liu\",\"doi\":\"10.1002/tox.24326\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Lung cancer (LC) is one of the major malignant diseases threatening human health. The study aimed to identify the effect of citrulline on the malignant phenotype of LC cells and to further disclose the potential molecular mechanism of citrulline in regulating the development of LC, providing a novel molecular biological basis for the clinical treatment of LC. The effects of citrulline on the viability, proliferation, migration, and invasion of LC cells (A549, H1299) were validated by CCK-8, colony formation, EdU, and transwell assays. The cell glycolysis was assessed via determining the glucose uptake, lactate production, ATP levels, extracellular acidification rate (ECAR), and oxygen consumption rate (OCR). RNA-seq and molecular docking were performed to screen for citrulline-binding target proteins. Western blotting experiments were conducted to examine the expression of related signaling pathway molecules. In addition, the impacts of citrulline on LC growth in vivo were investigated by constructing mouse models. Citrulline augmented the viability of LC cells in a concentration and time-dependent manner. The proliferation, migration, invasion, glycolysis, and EMT processes of LC cells were substantially enhanced after citrulline treatment. Bioinformatics analysis indicated that citrulline could bind to RAB3C protein. Western blotting results indicated that citrulline activated the IL-6/STAT3 pathway by binding to RAB3C. In addition, animal experiments disclosed that citrulline promoted tumor growth in mice. Citrulline accelerated the glycolysis and activated the IL6/STAT3 pathway through the RAB3C protein, consequently facilitating the development of LC.</p>\",\"PeriodicalId\":11756,\"journal\":{\"name\":\"Environmental Toxicology\",\"volume\":\"39 9\",\"pages\":\"4372-4384\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2024-05-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Toxicology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/tox.24326\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Toxicology","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/tox.24326","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Citrulline facilitates the glycolysis, proliferation, and metastasis of lung cancer cells by regulating RAB3C
Lung cancer (LC) is one of the major malignant diseases threatening human health. The study aimed to identify the effect of citrulline on the malignant phenotype of LC cells and to further disclose the potential molecular mechanism of citrulline in regulating the development of LC, providing a novel molecular biological basis for the clinical treatment of LC. The effects of citrulline on the viability, proliferation, migration, and invasion of LC cells (A549, H1299) were validated by CCK-8, colony formation, EdU, and transwell assays. The cell glycolysis was assessed via determining the glucose uptake, lactate production, ATP levels, extracellular acidification rate (ECAR), and oxygen consumption rate (OCR). RNA-seq and molecular docking were performed to screen for citrulline-binding target proteins. Western blotting experiments were conducted to examine the expression of related signaling pathway molecules. In addition, the impacts of citrulline on LC growth in vivo were investigated by constructing mouse models. Citrulline augmented the viability of LC cells in a concentration and time-dependent manner. The proliferation, migration, invasion, glycolysis, and EMT processes of LC cells were substantially enhanced after citrulline treatment. Bioinformatics analysis indicated that citrulline could bind to RAB3C protein. Western blotting results indicated that citrulline activated the IL-6/STAT3 pathway by binding to RAB3C. In addition, animal experiments disclosed that citrulline promoted tumor growth in mice. Citrulline accelerated the glycolysis and activated the IL6/STAT3 pathway through the RAB3C protein, consequently facilitating the development of LC.
期刊介绍:
The journal publishes in the areas of toxicity and toxicology of environmental pollutants in air, dust, sediment, soil and water, and natural toxins in the environment.Of particular interest are:
Toxic or biologically disruptive impacts of anthropogenic chemicals such as pharmaceuticals, industrial organics, agricultural chemicals, and by-products such as chlorinated compounds from water disinfection and waste incineration;
Natural toxins and their impacts;
Biotransformation and metabolism of toxigenic compounds, food chains for toxin accumulation or biodegradation;
Assays of toxicity, endocrine disruption, mutagenicity, carcinogenicity, ecosystem impact and health hazard;
Environmental and public health risk assessment, environmental guidelines, environmental policy for toxicants.