Yuming Peng, Yi Liu, Yifan Wang, Zhenxing Geng, Yue Qin, Shisong Ma
{"title":"气孔成熟组学:从单细胞转录组中狩猎调节防护细胞成熟和功能形成的基因。","authors":"Yuming Peng, Yi Liu, Yifan Wang, Zhenxing Geng, Yue Qin, Shisong Ma","doi":"10.1016/j.jgg.2024.05.004","DOIUrl":null,"url":null,"abstract":"<p><p>Stomata play critical roles in gas exchange and immunity to pathogens. While many genes regulating early stomatal development up to the production of young guard cells (GCs) have been identified in Arabidopsis, much less is known about how young GCs develop into mature functional stomata. Here we perform a maturomics study on stomata, with \"maturomics\" defined as omics analysis of the maturation process of a tissue or organ. We develop an integrative scheme to analyze three public stomata-related single-cell RNA-seq datasets and identify a list of 586 genes that are specifically up-regulated in all three datasets during stomatal maturation and function formation. The list, termed sc_586, is enriched with known regulators of stomatal maturation and functions. To validate the reliability of the dataset, we selected two candidate G2-like transcription factor genes, MYS1 and MYS2, to investigate their roles in stomata. These two genes redundantly regulate the size and hoop rigidity of mature GCs, and the mys1 mys2 double mutants cause mature GCs with severe defects in regulating their stomatal apertures. Taken together, our results provide a valuable list of genes for studying GC maturation and function formation.</p>","PeriodicalId":54825,"journal":{"name":"Journal of Genetics and Genomics","volume":" ","pages":"1286-1299"},"PeriodicalIF":6.6000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stomatal maturomics: hunting genes regulating guard cell maturation and function formation from single-cell transcriptomes.\",\"authors\":\"Yuming Peng, Yi Liu, Yifan Wang, Zhenxing Geng, Yue Qin, Shisong Ma\",\"doi\":\"10.1016/j.jgg.2024.05.004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Stomata play critical roles in gas exchange and immunity to pathogens. While many genes regulating early stomatal development up to the production of young guard cells (GCs) have been identified in Arabidopsis, much less is known about how young GCs develop into mature functional stomata. Here we perform a maturomics study on stomata, with \\\"maturomics\\\" defined as omics analysis of the maturation process of a tissue or organ. We develop an integrative scheme to analyze three public stomata-related single-cell RNA-seq datasets and identify a list of 586 genes that are specifically up-regulated in all three datasets during stomatal maturation and function formation. The list, termed sc_586, is enriched with known regulators of stomatal maturation and functions. To validate the reliability of the dataset, we selected two candidate G2-like transcription factor genes, MYS1 and MYS2, to investigate their roles in stomata. These two genes redundantly regulate the size and hoop rigidity of mature GCs, and the mys1 mys2 double mutants cause mature GCs with severe defects in regulating their stomatal apertures. Taken together, our results provide a valuable list of genes for studying GC maturation and function formation.</p>\",\"PeriodicalId\":54825,\"journal\":{\"name\":\"Journal of Genetics and Genomics\",\"volume\":\" \",\"pages\":\"1286-1299\"},\"PeriodicalIF\":6.6000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Genetics and Genomics\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1016/j.jgg.2024.05.004\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/5/19 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Genetics and Genomics","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.jgg.2024.05.004","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/5/19 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Stomatal maturomics: hunting genes regulating guard cell maturation and function formation from single-cell transcriptomes.
Stomata play critical roles in gas exchange and immunity to pathogens. While many genes regulating early stomatal development up to the production of young guard cells (GCs) have been identified in Arabidopsis, much less is known about how young GCs develop into mature functional stomata. Here we perform a maturomics study on stomata, with "maturomics" defined as omics analysis of the maturation process of a tissue or organ. We develop an integrative scheme to analyze three public stomata-related single-cell RNA-seq datasets and identify a list of 586 genes that are specifically up-regulated in all three datasets during stomatal maturation and function formation. The list, termed sc_586, is enriched with known regulators of stomatal maturation and functions. To validate the reliability of the dataset, we selected two candidate G2-like transcription factor genes, MYS1 and MYS2, to investigate their roles in stomata. These two genes redundantly regulate the size and hoop rigidity of mature GCs, and the mys1 mys2 double mutants cause mature GCs with severe defects in regulating their stomatal apertures. Taken together, our results provide a valuable list of genes for studying GC maturation and function formation.
期刊介绍:
The Journal of Genetics and Genomics (JGG, formerly known as Acta Genetica Sinica ) is an international journal publishing peer-reviewed articles of novel and significant discoveries in the fields of genetics and genomics. Topics of particular interest include but are not limited to molecular genetics, developmental genetics, cytogenetics, epigenetics, medical genetics, population and evolutionary genetics, genomics and functional genomics as well as bioinformatics and computational biology.